Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Cathodic Modification in Aqueous Phosphate­-Molibdate Solutions of Chitosan as a Way of Enhancing Hydride-Forming and Hydride-Accumulating Properties of Titanium

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The electrochemical behavior of Ti electrode in aqueous solutions containing Na2MoO4 + H3PO4 + chitosan was investigated by methods of potential – time (E–t) curves at cathodic polarisation in galvanostatic mode, currentless chronopotentiometry, optic microscopy, X­ray spectral analysis of surface and determining roughness by measuring the wetting angle.

It was found that on Ti electrode in the time of cathodic treatment in aqueous solutions including Na2MoO4 + H3PO4 + chitosan oxidation of titanium by the adsorbing anions Mo(VI) and the incorporation of sodium and hydrogen cations into cristallic titanium lattice through the forming on the surface the layer of chitosan polymer intercalated by polymolibdate and polyphosphatemolibdate ions with the forming of the substances Na6 + xTinMo7 − nO24 (chitosan) and Na7 + yTi2(MoO4)y(PO4)3 + y (chitosan) took place. The adsorption of polyanions and the formation of the layer of the indicated composition occurred already without current.

Literature

1. Petry O. A., Levin E. E. Hydrogen storage materials in electrochemical systems. Mendeleev Chemistry Journal, 2006, vol. 50, no. 6, pp. 1152 (in Russian).

2. Yartys E. A., Lototsky M. V. Overview of hydrogen storage methods. D. V. Schur, S. Yu. Zaginaichenko, T. N. Vezirogli, eds. Hydrogen materials science and chemistry of carbon materials. ICHMS‘2003 : VIII International Conference (Sudak, Crimea, Ukraine, September 14–20, 2003). Kiev, IAHE, 2003, pp. 1108–1109.

3. Solonin Yu. M. Activated Textured MoO3 for hydrogen sensors. D. V. Schur, S. Yu. Zaginaichenko, T. N. Vezirogli, eds. Hydrogen materials science and chemistry of carbon materials. ICHMS‘2003 : VIII International Conference. (Sudak, Crimea, Ukraine, September 14–20, 2003). Kiev, IAHE, 2003, pp. 14–20.

4. Vlasov N. M., Solovey A. L., Fedik I. I., Chernikov A. S. Hydrogen Storage Alloys and their hydrogen Reversible Sorption Capability. International Scientific Journal for Alternative Energy and Ecology. Sarov, Scientific Technical Centre “TATA”, 2003. P. 37. DOI: https://doi.org/10.13140/RG.2.2.13360.35843

5. Nenitsesku K. D. Obshchaya chimiya [General chemistry]. Moscow, Mir Publ., 1968. 800 p. (in Russian).

6. Rao C. N. R., Raveau B. Transition Metal. Oxides. Structura, Properties and Synthesis of Ceramic Oxides. New York, J. Wiley – VCH, 1997. 337 p.

7. Tejuca L. G., Sierro J. L. G. Perovskites and Applications of Perovskite – tipe Oxides. New York, Dekker, 1993. 382 p.

8. Tomashov N. D. Corrosion-resistant titanium alloys. Corrosion and corrosion protection. Itogi Nauki i Tekhniki, 1978, vol. 6, pp. 53 (in Russian).

9. Covington L. G. Titanium Science and Technoloqy. New York, London, Plenum Press, 1973, vol. 4, pp. 23–95.

10. Brynza A. P., Danilova L. M. Cathodic hydrogen evolution on titanium and Ti–O system alloys. Russian Journal of Electrochemistry, 1973, vol. 10, no. 3, pp. 352–355 (in Russian).

11. Wiecek B. The effect of the pH on electrodeposition of molybdenum oxide film. Pol. J. Chem., 2008, vol. 82, no. 3, pp. 621.

12. Stadnik O. A., Ivanova N. D., Boldyrev E. I., Zheleznova L. I. The composition of the electrochemically synthesized oxide compounds of molybdenum. Ukr. Chem. J., 2009, vol. 75, no. 11/12, pp. 55 (in Russian).

13. Tekutskaya E. E., Kravtsov V. I. Adsorption and electrochemical behavior of molybdenum complexes (VI) on the surface of a solid electrode. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory/ Diagnostics of Material], 1998, vol. 64, no. 7, pp. 8 (in Russian).

14. Alpatova N. M., Kazarinov V. E., Levi M. D., Ovsyannikova E. V. Comparative of the electrochemical behavior of heteropoly acids in solution and immobilized in a film of a conductive polymer. Electrochemistry,1994, vol. 30, no. 7, pp. 859 (in Russian).

15. Tarasov V. P., Privalov V. I., Kirakosyan G. A., Padurets L. N., Shilov A. L. Hydrogen distribution in the Мo0.5Ti0.5Hx alloys as probed by NMR. D. V. Schur, S. Yu. Zaginaichenko, T. N. Vezirogli, eds. Hydrogen materials science and chemistry of carbon materials. ICHMS‘2009 : XI International Conference (Sudak, Crimea, Ukraine, September 14–20, 2009). Kiev, IAHE, pp. 52–53.

16. Padurets L. N., Dobrokhotova Z. V., Shilov A. L. Transformations in titanium dihydride phase. Int. J. Hydrogen Energy, 1999, vol. 24, no. 2–3, рр. 153–156.

17. Muller A., Roy S. Nano-objects based on metal oxides : Reactionary ability, building blocks for polymer structures and structural diversity. Uspekhi Khimii [Russian Chemical Reviews], 2002, vol. 71, no. 12, pp. 1107 (in Russian).

18. Kuznetsov V. V., Kalinkina A. A. Electrochemical properties of composite materials based on platinum modified with molybdenum compounds. Electrochemistry, 2007, vol. 43, no. 7, pp. 815 (in Russian).

19. Mahler H. R., Cordes E. H. Basic Biological Chemistry Edition. New York, Happer & Row Publ., 1968. 567 p.

20. Krayukhina M. A., Samoilova N. A., Yamskov I. A. Polyelectrolyte complexes of chitosan : formation, properties and application. Uspekhi Khimii [Russian Chemical Reviews], 2008, vol. 77, no. 9, pp. 854 (in Russian).

21. Emelianenko A. M. Wettability of interphase boundaries as an indicator of their properties and condition. Journal fizikohimija poverhnosti i zashhita materialov [Protection of Material and Physical Chemistry of Surface], 2008, vol. 44, no. 5, pp. 453 (in Russian).

22. Sheveleva I. V., Zemskova L. A., Voit A. V., Kuryavy V. G. Fibrous chitosan-carbon materials. Fibre Chemistry, 2008, no. 2, pp. 44 (in Russian).

23. Westheimer F. H. Why Nature Chose Phosphates. Science, 1987, vol. 235, no. 4793, pp. 1173–1178. DOI: https://doi.org/10.1126/science.2434996

24. Vaghari H., Jafarizadeh-Malmiri H., Berenjian A., Anarjan N. Recent advances in application of chitosan in fuel cells. Sustainable Chem. Processes, 2013, vol. 1, no. 2, pp. 16.

25. Silva L. D., Bergel M. A., Feron D. Basseguy R. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode. Int. J. Hydrogen Energy, 2010, vol. 35, no. 16, pp. 8561–8568.

26. Ma J., Sahai Y. Chitosan biopolymer for fuel cell applications. Carbohydr. Polym., 2013, vol. 92, no. 2, pp. 955–975.

Full Text (PDF):
(downloads: 157)