Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

titanium

Electrodeposition of lead dioxide on titanium substrate

Modern technology causes the renewal of the interest to physical and chemical properties of solid oxide electrodes. Among these, PbO2/substrate has attracted considerable attention due to its application as an electrode in backup current sources. It was shown that the stable and active lead dioxide coating can be produced by appropriate pretreatment of the titanium substrate, including the coating of the substrate with colloidal graphite.

Elemental composition of the surface layers formed on titanium at the cathodic treatment in chitosan-containing aqueous-dimethyl sulfoxide solutions of phosphate-molybdate electrolyte

It was established that at the cathodic treatment of titanium in aqueous dimethyl sulfoxide solutions of sodium molybdate, containing phosphoric acid, at the potential of the cathodic incorporation of sodium (Ec  =  − 2.6 V) in the potentiostatic mode, the composition formed on the electrode surface layer depended not only on the composition of the solution, but also on the volume ratio of the aqueous electrolyte solution and the organic solvent (dimethyl sulfoxide).

Cathodic Modification in Aqueous Phosphate­-Molibdate Solutions of Chitosan as a Way of Enhancing Hydride-Forming and Hydride-Accumulating Properties of Titanium

The electrochemical behavior of Ti electrode in aqueous solutions containing Na2MoO4 + H3PO4 + chitosan was investigated by methods of potential – time (E–t) curves at cathodic polarisation in galvanostatic mode, currentless chronopotentiometry, optic microscopy, X­ray spectral analysis of surface and determining roughness by measuring the wetting angle.

Positive electrode for reserve chemical current source

We studied the electrochemical deposition of lead dioxide on titanium coated with colloidal graphite. It is showing that under optimal process conditions possible to obtain high quality coatings with good adhesion to the base and high-bit characteristics. Received bit characteristics of the layout of the backup power source.