Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

cycling

The effect of surface capacity of positive electrodes on cycle life of lithium-sulfur batteries

The effect of sulfur content in positive electrodes (the surface capacity of sulfur electrodes) on the characteristics (such as the depth of sulfur electrochemical reduction, changes in capacitance and Coulomb efficiency during cycle life) of lithium-sulfur cells with electrolytes based on sulfolane was studied. It was shown that the reason for the capacitance decrease of the lithium-sulfur cells at the early stage of its cycle life is the displacement of sulfur of the porous positive electrode from the rear regions into the front ones.

Impedance spectroscopy of modified potassium titanates. I

The electrochemical and electrophysical properties of the protonated and modified with silver iodide potassium titanates, which can be applied in energy storage units, have been investigated by impedance spectroscopy. It has been shown that the dielectric losses at medium and high frequencies are weakly dependent on the polarizing voltage. It has also been established that transfer in modified potassium titanate can be made through potassium and silver ions. The equivalent scheme of the process has been proposed and the magnitudes of the Warburg impedances have been calculated.

Degradation Mechanism of Electrodes from Sodium Titanate at Cycling

Degradation of Na2Ti3O7-based electrodes is studied by galvanostatic as well as electrochemical impedance spectroscopy methods. The rate of degradation was shown to decrease from cycle to cycle as the cycling progresses and also as the cycling current increases. It was concluded that the main reason of degradation is the gradual an electrolyte reduction with the formation of insoluble products (SEI).