Polymer binders for the electrodes of lithium batteries. Part 3. Conductive polymers
The third part of the review is devoted to polymer binders with electronic conductivity used to make composite electrodes for lithium electrochemical systems. Polymer semiconductors (“synthetic metals”), related polymers with additionally introduced functional groups, related copolymers and mixtures of polymers, as well as carbon chain polymers and copolymers with inсorporated polyaromatic fragments are considered. Such materials significantly improve electrical connectivity of the composite electrode and make it possible to eliminate or minimise the content of electrochemically inert conductive additives (carbon black, graphite powder), which positively influences on the specific capacity and cycling stability of the electrodes. Improving conditions of electronic transfer is especially important for the efficient use of active materials with extremely low intrinsic conductivity, such as Si, Li4Ti5O12, LiFePO4, etc. The final part of the review summarizes general principles of the targeted selection of a polymer binder.
1. Chen H., Ling M., Hencz L., Ling H. Y., Li G., Lin Z., Liu G., Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev., 2018, vol. 118, no. 18, pp. 8936–8982. https://www.doi.org/10.1021/acs.chemrev.8b00241
2. Ma Y., Ma J., Cui G. Small things make big deal : Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater., 2019, vol. 20, pp. 146–175. https://www.doi.org/10.1016/j.ensm.2018.11.013
3. Kargin V. A., ed. Entsiklopedija polymerov [Encyclopedia of Polymers : in 3 vols]. Moscow, Sovetskaya Entsiklopedija Publ., 1972, vol. 1. 1224 p. (in Russian).
4. Sazhin B. I., Lobanov A. M., Romanovskaja O. S., Eidel’nant M. P., Koikov S. N., Shuvaev V. P., Borisova M. E. Jelektricheskie svojstva polimerov [Electrical properties of polymers]. Leningrad, Himija, 1986. 224 p. (in Russian).
5. Diaz A. F., Rubinson J. F., Mark H. B. Electrochemistry electrode applications of electroactive / conductive polymers. Adv. Polym Sci., 1988, vol. 84, pp. 113–139. https://www.doi.org/10.1007/bfb0025905
6. Ates M., Karazehir T., Sarac A. S. Conducting polymers and their applications. Current Phys. Chem., 2012, vol. 2, pp. 224–240. https://www.doi.org/10.2174/1877946811202030224
7. Vernitskaya T. V., Efimov O. N. Polypyrrole : a conducting polymer ; its synthesis, properties and applications. Russ. Chem. Rev., 1997, vol. 66, no. 5, 443–457. https://www.doi.org/10.1070/rc1997v066n05abeh000261
8. Boeva Z. A., Sergeyev V. G. Polyaniline : Synthesis, properties, and application. Polym. Sci. Ser. C, 2014, vol. 56, no. 1, pp. 144–153. https://www.doi.org/10.1134/s1811238214010032
9. Tarasevich M. R., Hrushheva E. I., eds. Jelektrohimija polimerov [The Electrochemistry of Polymers]. Moscow, Nauka Publ., 1990. 238 p. (in Russian).
10. Tamura T., Aoki Y., Ohsawa T., Dokko K. Polyaniline as a functional binder for LiFePO4 cathodes in lithium batteries. Chem. Lett., 2011, vol. 40, no. 8, pp. 828–830. https://www.doi.org/10.1246/cl.2011.828
11. Kuwabata S., Idzu T., Martin C. R., Yoneyama H. Charge–discharge properties of composite films of polyaniline and crystalline V2O5 particles. J. Electrochem. Soc., 1998, vol. 145, no. 8, pp. 2707–2710. https://www.doi.org/10.1149/1.1838702
12. Gaberscek M., Jamnik J. Impact of electrochemical wiring topology on the kinetics of insertion electrodes. Solid State Ionics, 2006, vol. 177, pp. 2647–2651. https://www.doi.org/10.1016/j.ssi.2006.02.035
13. Dasa P. R. Gräfensteina A., Ledwocha D., Ostersa O., Komsiyskaa L., Wittstock G. Conducting polymers as binder additives for cathodes in Li ion battery. ECS Trans., 2014, vol. 63, no. 1, pp. 31–43. https://www.doi.org/10.1149/06301.0031ecst
14. Mattoso L. H. C., MacDiarmid A. G., Epstein A. J. Controlled synthesis of high molec-ular weight polyaniline and poly(o-methoxyaniline). Synth. Met., 1994, vol. 68, no. 1, pp. 1–11. https://www.doi.org/10.1016/0379-6779(94)90140-6
15. Akcelrud L., Gonçalves D., Dos Dantos D. S. J., Mattoso L. H. C., Karasz F. E., Faria R. M. Poly (o-methoxy aniline) : Solubility, deprotonation-protonation process in solution and cast films. Synth. Met., 1997, vol. 90, no. 1, pp. 5–11. https://www.doi.org/10.1016/S0379-6779(97)03895-2
16. Wang X., Zhang Y., Shi Y., Zeng X., Tang R., We L. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries. Ionics, 2019, vol. 25, pp. 5323–5331. https://www.doi.org/10.1007/s11581-019-03122-1
17. Rajeev K.K, Kim E., Nam J., Lee S., Mun J., Kim T.-H. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim. Acta, 2020, vol. 333, pp. 1–20. https://www.doi.org/10.1016/j.electacta.2019.135532
18. Fedorková A., Nacher-Alejos A., Gómez-Romero P., Oriňáková R., Kaniansky D. Structural and electrochemical studies of PPy / PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim. Acta, 2010, vol. 55, pp. 943–947. https://www.doi.org/10.1016/j.electacta.2009.09.060
19. Zhang P., Zhang L., Ren X., Yuan Q., Liu J., Zhang Q. Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery. Synth. Met., 2011, vol. 161, no. 11–12, pp. 1092–1097. https://www.doi.org/10.1016/j.synthmet.2011.03.021
20. Fedorková A., Oriтáková R., Oriтák A., Wiemhöfer H., Kaniansky D., Winter M. Surface treatment of LiFePO4 cathode material with PPy / PEG conductive layer. J. Solid State Electrochem., 2010, vol. 14, no. 12, pp. 2173–2178. https://www.doi.org/10.1007/s10008-009-0967-2
21. Chew S. Y., Feng C., Ng S. H., Wang J., Guo Z., Liu H. Low-temperature synthesis of Polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties. J. Electrochem. Soc., 2007, vol. 154, no. 7, pp. A633–A637. https://www.doi.org/10.1149/1.2734778
22. Cui L., Shen J., Cheng F., Tao Z., Chen J. SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J. Power Sources, 2011, vol. 196, no. 4, pp. 2195–2201. https://www.doi.org/10.1016/j.jpowsour.2010.09.075
23. Zhao Y., Lv Z., Wang Y., Xu T. Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability. Ionics, 2018, vol. 24, no. 1, pp. 51–60. https://www.doi.org/10.1007/s11581-017-2166-y
24. Han P., Chung S.-H., Manthiram A. Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Mater., 2019, vol. 17, pp. 317–324. https://www.doi.org/10.1016/j.ensm.2018.11.002
25. Fu Y., Manthiram A. Enhanced cyclability of lithium–sulfur batteries by a polymer acid-doped polypyrrole mixed ionic-electronic conductor. Chem. Mater., 2012, vol. 24, no. 15, pp. 3081–3087. https://www.doi.org/10.1021/cm301661y
26. Liu Y., Yan W., An X., Du X., Wang Z., Fan H., Liu S., Hao X., Guan G. A polypyrrole hollow nanosphere with ultra-thin wrinkled shell : synergistic trapping of sulfur in lithium-sulfur batteries with excellent elasticity and buffer capability. Electrochim. Acta, 2018, vol. 271, pp. 67–76. https://www.doi.org/10.1016/j.electacta.2018.03.131
27. Mangold K.-M., Weidlich C., Schuster J., Jüttner K. Ion exchange properties and selectivity of PSS in an electrochemically switchable PPy matrix. J. Appl. Electrochem., 2005, vol. 35, no. 12, pp. 1293–1301. https://www.doi.org/10.1007/s10800-005-9061-3
28. Groenendaal L., Jonas F., Freitag D., Pielartzik H., Reynolds J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives : Past, present, and future. Adv. Mater., 2000, vol. 12, no. 7, pp. 481–494. https://www.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
29. Skotheim T. A., Reynolds J. R. Conjugated polymers : processing and applications. CRC Press, 2006. 656 p.
30. Stöcker T., Kоhler A., Moos R. Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci. B : Polym. Phys., 2012, vol. 50, no. 14, pp. 976–983. https://www.doi.org/10.1002/polb.23089
31. Eliseeva S. N., Levin O. V., Tolstopyatova E. G., Alekseeva E. V., Kondratiev V. V. Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries. Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1146–1149. https://www.doi.org/10.1134/S1070427215070071
32. Levin O. V., Eliseeva S. N., Alekseeva E. V., Tolstopjatova E. G., Kondratiev V. V. Composite LiFePO4 / poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components. Int. J. Electrochem. Sci., 2015, vol. 10, pp. 8175–8189.
33. Eliseeva S. N., Levin O. V., Tolstopjatova E. G., Alekseeva E. V., Apraksin R. V., Kondratiev V. V. New functional conducting poly-3,4-ethylenedioxythiopene : polystyrene-sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Mater. Lett., 2015, vol. 161, pp. 117–119. https://www.doi.org/10.1016/j.matlet.2015.08.078
34. Vorobeva K. A., Eliseeva S. N., Apraksin R. V., Kamenskii M. A., Tolstopjatova E. G., Kondratiev V. V. Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder. J. Alloys Compd., 2018, vol. 766, pp. 33–44. https://www.doi.org/10.1016/j.jallcom.2018.06.324
35. Shkreba E. V., Eliseeva S. N., Apraksin R. V., Kamenskii M. A., Tolstopjatova E. G., Kondratiev V. V. Electrochemical performance of lithium titanate anode fabricated using a water-based binder. Mendeleev Commun., 2019, vol. 29, no. 1, pp. 105–107. https://www.doi.org/10.1016/j.mencom.2019.01.036
36. Eliseeva S. N., Shkreba E. V., Kamenskiia M. A., Tolstopjatovaa E. G., Holzea R., Kondratieva V. V. Effects of conductive binder on the electrochemical performance of lithium titanate anodes. Solid State Ionics, 2019, vol. 333, pp. 18–29. https://www.doi.org/10.1016/j.ssi.2019.01.011
37. Shkreba E. V., Eliseeva S. N., Apraksin R. V., Kondratiev V. V. The study of electrochemical properties of lithium titanate based electrodes with conducting polymer binder. Electrochemical Energetics, 2017, vol. 17, no. 3, pp. 123–134 (in Russian). https://www.doi.org/10.18500/1608-4039-2017-17-3-123-134
38. Das P. R., Komsiyska L., Osters O., Wittstock G. PEDOT : PSS as a Functional Binder for Cathodes in Lithium Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, no. 4, pp. A674–A678. https://www.doi.org/10.1149/2.0581504jes
39. Kim J.-M., Park H.-S., Park J.-H., Kim T.-H., Song H.-K., Lee S.-Y. Conducting polymer-skinned electroactive materials of lithium-ion batteries : Ready for monocomponent electrodes without additional binders and conductive agents. ACS Appl. Mater. Inter., 2014, vol. 6, no. 15, pp. 12789–12797. https://www.doi.org/10.1021/am502736m
40. Su M., Liu S., Wan H., Dou A., Liu K., Liu Y. Effect of binders on performance of Si / C composite as anode for Li-ion batteries. Ionics, 2019, vol. 25, no. 5, pp. 2103–2109. https://www.doi.org/10.1007/s11581-018-2611-6
41. Wang W., Yue X., Meng J., Wang X., Zhou Y., Wang Q., Fu Z. Comparative study of water-based LA133 and CMC/SBR binders for sulfur cathode in advanced lithiumsulfur batteries. J. Phys. Chem. C, 2019, vol. 123, no. 1, pp. 250–257. https://www.doi.org/10.1021/acs.jpcС.~8b10736
42. Li J. Y., Xu Q., Li G., Yin Y. X., Wan L. J., Guo Y. G. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Mater. Chem. Front., 2017, vol. 1, no. 9, pp. 1691–1708. https://www.doi.org/10.1039/c6qm00302h
43. Higgins T. M., Park S. H., King P. J., Zhang C. J., McEvoy N., Berner N. C., Daly D., Shmeliov A., Khan U., Duesberg G., Nicolosi V., Coleman J. N. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano, 2016, vol. 10, no. 3, pp. 3702–3713. https://www.doi.org/10.1021/acsnano.6b00218
44. Shao D., Zhong H., Zhang L. Water-soluble conductive composite binder containing PEDOT :PSS as conduction promoting sgent for Si anode of lithium-ion batteries. ChemElectroChem, 2014, vol. 1, no. 10, pp. 1679–1687. https://www.doi.org/10.1002/celC.201402210
45. Salem N., Lavrisa M., Abu-Lebdeh Y. Ionically-functionalized poly(thiophene) conductive polymers as binders for silicon and graphite anodes for li-ion batteries. Energy Technol., 2016, vol. 4, no. 2, pp. 331–340. https://www.doi.org/10.1002/ente.201500250
46. Zhaoa H., Dub A., Linga M., Battagliaa V., Liu G. Conductive polymer binder for nano-silicon / graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim. Acta, 2016, vol. 209, pp. 159–162. https://www.doi.org/10.1016/j.electacta.2016.05.061
47. Zheng T. Jia Z., Lin N., Langer T., Lux S., Lund I., Gentschev A.-C., Qiao J., Liu G. Molecular spring enabled high-performance anode for lithium ion batteries. Polymers, 2017, vol. 9, pp. 657–667. https://www.doi.org/10.3390/polym9120657
48. Chou S.-L., Pan Y., Wang J. Z., Liu H. K., Dou S. X. Small things make a big difference : Binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, no. 38, pp. 20347–20359. https://www.doi.org/10.1039/C4CP02475C
49. Obrovac M. N., Chevrier V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev., 2014, vol. 114, no. 23, pp. 11444–11502. https://www.doi.org/10.1021/cr500207g
50. Suna Y., Dong H., Xu Y., Zhang Y., Zhao C., Wang D., Liu Z., Liu D. Incorporating cyclized-polyacrylonitrile with Li4Ti5O12 nanosheet for high performance lithium ion battery anode material. Electrochim. Acta, 2017, vol. 246, pp. 106–114. https://www.doi.org/10.1016/j.electacta.2017.05.080
51. Zil’berman E. N. The Reactions of Nitrile-containing Polymers. Russ. Chem. Rev., 1986, vol. 55, no. 1, pp. 39–48. https://www.doi.org/10.1070/RC1986v055n01ABEH003170
52. Andreeva O. A., Burkova L. A., Firsov Ye. I. Conformational and structural transformations of polyacrilonitrile and polyacrilonitrile-α-D during thermodegradation in media with low content of oxygen. Polym. Sci. Ser. A, 1987, vol. 29, no. 9, pp. 1950–1955 (in Russian).
53. Semenistaya T. V., Petrov V. V. Metallsoderzhaschii poliakrilonitril : sostav, structura, svoistva [Metal-containing Polyacrylonitrile : Composition, Structure, Properties]. Taganrog, Izdatel’stvo Yuzhnogo federal’nogo universiteta, 2015. 169 p. (in Russian).
54. Novak P. Müller K., Santhanam K. S. V., Haas O. Electrochemically active polymers for rechargeable batteries. Chem. Rev., 1997, vol. 97, no. 1, pp. 207–282. https://www.doi.org/10.1021/cr941181o
55. Levi M. D., Gofer Y., Aurbach D. A. A synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymer cathodes and anodes, Polym. Adv. Technol., 2002, vol. 13, no. 10–12, pp. 697. https://www.doi.org/10.1002/pat.259
56. Muench S., Wild A., Friebe C. Ha?upler B., Janoschka T., Schubert U. S. Polymer-based organic batteries. Chem. Rev. 2016, vol. 116, no. 16, pp. 9438–9484. https://www.doi.org/10.1021/acs.chemrev.6b00070
57. Goto F., Abe K., Ikabayashi K., Yoshida T., Morimoto H. The polyaniline/lithium battery. J. Power Sources, 1987, vol. 20, no. 3–4, pp. 243–248. 10.1016/0378-7753(87)80118-0
58. Manuel J., Raghavan P., Shin C., Heo M.-Y., Ahn J.-H., Noh J.-P., Cho G.-B., Ryu H.- S., Ahn H.-J. Electrosprayed polyaniline as cathode material for lithium secondary batteries. Mat. Res. Bull., 2010, vol. 45, no. 3, pp. 265–268. https://www.doi.org/10.1016/j.materresbull.2009.12.021