Изучение электрохимических свойств углеродных материалов для отрицательного электрода
Electrochemical characteristics of electrodes based on various carbon materials such as expanded graphite, nanotubes, black carbon for hybrid supercapacitors C/PbO2 with acid electrolyte were investigated. It was shown that the highest values of the capacitive characteristics were obtained using TUBALL graphene nanotubes (LLC OCSiAl.ru, Novosibirsk).
1. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–958.
2. Kёotz R., Carlen M. Principles and applications of electrochemical capacitor. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. https://doi.org/10.1016/S0013-4686(00)00345-6
3. Zheng J. P. The limitations of energy density of battery and doublelayer capacitor asymmetric cells. J. Electrochem. Soc., 2003, vol. 150, pp. A484–A492. https://doi.org/10.1149/1.1559067
4. Guillemet Ph., Pascot C., Scudeller Y. Electro-thermal analysis of Electric Double-Layer-Capacitors. Proc. 14th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC). Rome, Italy, IEEE Publ., 2008, pp. 224–228.
5. Yang H., Kannappan S., Pandian A. S., Jang J. H., Lee Y. S., Lu W. Rapidly annealed nanoporous graphene materials for electrochemical energy storage. J. Mater. Chem. A, 2017, vol. 5, pp. 23720–23726. https://doi.org/10.1039/C7TA07733E
6. Bo Z., Wen Z., Kim H., Lu G., Yu K., Chen J. One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon, 2012, vol. 50, pp. 4379–4387. https://doi.org/10.1016/j.carbon.2012.05.014
7. Singh A. P., Karandikar P. B., Tiwari N. K. Effect of electrode shape on the parameters of supercapacitor. IEEE, 2015, pp. 669–673. https://doi.org/10.1109/IIC.2015.7150826
8. Simon P., Burke A. Nanostructured carbons : Double-layer capacitance and more. Electrochem. Soc. Interface, 2008, vol. 17, no. 1, pp. 38–44.
9. Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater., 2008, vol. 7, no. 11, pp. 845–854. https://doi.org/10.1142/9789814287005_0033
10. Zhang L. L., Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, vol. 38, no. 9, pp. 2520–2531. https://doi.org/10.1039/B813846J
11. Jiang J., Zhang L., Wang X., Holm N., Rajagopalan K., Chen F., Chen F., Ma S. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta, 2013, vol. 113, pp. 481–489. https://doi.org/10.1016/j.electacta.2013.09.121
12. Thambidurai A., Lourdusamy J. K., John J. V., Ganesan S. Preparation and electrochemical behavior of biomass based porous carbons as electrodes for supercapacitors : A comparative investigation. Kor. J. Chem. Eng., 2014, vol. 31, no. 2, pp. 268–275. https://doi.org/10.1007/s11814-013-0228-z
13. Liang C., Li Z., Dai S. Mesoporous carbon materials : Synthesis and modification. Angew. Chem. Int. Ed., 2008, vol. 47, no. 20, pp. 3696–3717. https://doi.org/10.1002/anie.200702046
14. Saha D., Li Y., Bi Z., Chen J., Keum J. K., Hensley D. K., Grappe H. A., Meyer H. M. 3rd, Dai S., Paranthaman M. P., Naskar A. K. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir ACS J. Surf. Colloids, 2014, vol. 30, no. 3, pp. 900–910. https://doi.org/10.1021/la404112m
15. Kumagai S., Sato M., Tashima D. Electrical double-layer capacitance of micro- and meso-porous activated carbon prepared from rice husk and beet sugar. Electrochim. Acta, 2013, vol. 114, pp. 617–626. https://doi.org/10.1016/j.electacta.2013.10.060
16. Ersoy D. A., McNallan M. J., Gogotsi Y. Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mater. Res. Innov., 2001, vol. 5, no. 2, pp. 55–62. https://doi.org/10.1007/s100190100136
17. Gogotsi Y. G., Jeon I.-D., McNallan M. J. Carbon coatings on silicon carbide by reaction with chlorine containing gases. J. Mater. Chem., 1997, vol. 7, no. 9, pp. 1841–1848. https://doi.org/10.1039/A701126A
18. Cambaz Z. G., Yushin G. N., Gogotsi Y., Vyshnyakova K. L., Pereselentseva L. N. Formation of carbide derived carbon on β-silicon carbide whiskers. Am. Ceram. Soc., 2006, vol. 89, no. 2, pp. 509–514. https://doi.org/10.1111/j.1551-2916.2005.00780.x
19. Béguin F., Presser V., Balducci A., Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, vol. 26, no. 14, pp. 2219–2251. https://doi.org/10.1002/adma.201304137
20. Liu H. J., Wang J., Wang C. X., Xia Y. Y. Ordered Hierarchical Mesoporous / Microporous Carbon Derived from Mesoporous Titanium–Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Advanced Energy Materials, 2011, vol. 1, no. 6, pp. 1101–1108. https://doi.org10.1002/aenm.201100255
21. Presser V., Zhang L., Niu J. J., McDonough J., Perez C., Fong H., Gogotsi Y. Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability. Advanced Energy Materials, 2011, vol. 1, no. 3, pp. 423–430. https://doi.org10.1002/aenm.201100047
22. Pérez C. R., Yeon S. H., Ségalini J., Presser V., Taberna P.-L., Simon P., Gogotsi Y. Structure and Electrochemical Performance of Carbide-Derived Carbon Nanopowders. Advanced Functional Materials, 2013, vol. 23, no. 8, pp. 1081–1089. https://doi.org10.1002/adfm.201200695
23. Gao Y., Presser V., Zhang L., Niu J. J., McDonough J. K., Pérez R. C., Lin H., Fong H., Gogotsi Y. High power supercapacitor electrodes based on flexible TiC–CDC nano-felts. J. Power Sources, 2012, vol. 201, pp. 368–375. https://doi.org/10.1016/j.jpowsour.2011.10.128
24. Heon M., Lofland S., Applegate J., Nolte R., Cortes E., Hettinger J. D., Taberna P.-L., Simon P., Huang P., Brunet M., Gogotsi Y. Continuous carbide-derived carbon films with high volumetric capacitance. Energy & Environmental Science, 2011, vol. 4, no. 1, pp. 135–138. https://doi.org/10.1039/C0EE00404A
25. Gogotsi Y., Nikitin A., Ye H., Zhou W., Fischer J. E., Yi B., Zhou W., Fischer J. E., Yi B., Foley H. C., Barsoum M. W. Nanoporous carbide derived carbon with tunable pore size. Nat. Mater., 2003, vol. 2, no. 9, pp. 591–594. https://doi.org/10.1038/nmat957
26. Yushin G., Nikitin A., Gogotsi Y. Carbide derived carbon. In: Y. Gogotsi, ed. Nanomaterials Handbook. Boca Raton, FL, CRC Press, 2006, pp. 237–280.
27. Dash R., Chmiola J., Yushin G., Gogotsi Y., Laudisio G., Singer J., Fischer J. E., Kucheyev S. Titanium carbide derived nanoporous carbon for energy related applications. Carbon, 2006, vol. 44, no. 12, pp. 2489–2497. https://doi.org/10.1016/j.carbon.2006.04.035
28. Kravchik A. E., Kukushkina J. A., Sokolov V. V., Tereshchenko G. F. Structure of nanoporous carbon produced from boron carbide. Carbon, 2006, vol. 44, no. 15, pp. 3263–3268. https://doi.org/10.1016/j.carbon.2006.06.037
29. Erdemir A., Kovalchenko A., McNallan M. J., Welz S., Lee A., Gogotsi Y., Carroll B. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide derived carbon films. Surf. Coat. Technol., 2004, vol. 188–189, no. 1–3, special issue, pp. 588–593. https://doi.org10.1016/j.surfcoat.2004.07.052
30. Permann L., Lätt M., Leis J., Arulepp M. Electrical double layer characteristics of nanoporous carbon derived from titanium carbide. Electrochim. Acta, 2006, vol. 51, no. 7, pp. 1274–1281. https://doi.org/10.1016/j.electacta.2005.06.024
31. Chmiola J., Yushin G., Dash R., Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources, 2006, vol. 158, no. 1, pp. 765–772. https://doi.org/10.1016/j.jpowsour.2005.09.008
32. Taberna P. L., Simon P., Fauvarque J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc., 2003, vol. 150, no. 3, pp. A292–A300. https://doi.org/10.1149/1.1543948
33. Yang Z., Ren J., Zhang Z., Xuli Chen, Guozhen Guan, Longbin Qiu, Ye Zhang, Huisheng Peng. Recent advancement of nanostructured carbon for energy applications. Chem. Rev., 2015, vol. 115, pp. 5159–5223. https://doi.org/10.1021/cr5006217
34. Wang G., Liang R., Liu L., Zhong B. Improving the specific capacitance of carbon nanotubes-based supercapacitors by combining introducing functional groups on carbon nanotubes with using redox-active electrolyte. Electrochim. Acta, 2014, vol. 115, pp. 183–188. https://doi.org/10.1016/j.electacta.2013.10.165
35. Bai X., Hu X., Zhou S., Yan J., Sun C., Chen P., Li L. In situ polymerization and characterization of grafted poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances. Electrochim. Acta, 2013, vol. 87, pp. 394–400. https://doi.org/10.1016/j.electacta.2012.09.079
36. Yang M., Cheng B., Song H., Chen X. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim. Acta, 2010, vol. 55, pp. 7021–7027. https://doi.org/10.1016/j.electacta.2010.06.077
37. Hahn M., Baertschi M., Barbieri O., Sauter J.C., Kötz R., Gallayb R. Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes. Electrochem. Solid-State Lett., 2004, vol. 7, pp. A33–A36. https://doi.org/10.1149/1.1635671
38. Izadi-Najafabadi A., Yasuda S., Kobashi K., Yamada T., Futaba D. N., Hatori H., Yumura M., Iijima S., Hata K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater., 2010, vol. 22, pp. E235–E241. https://doi.org/10.1002/adma.200904349
39. Xiang L. L., Jing T., Xin G. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Acta Phys. Chim. Sin., 2013, vol. 29, no. 1, pp. 111–116. https://doi.org/10.3866/PKU.WHXB201211091
40. Gueon D., Moon J. H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications : Emulsion-assisted compact packing and capacitance enhancement. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 20083–20089. https://doi.org/10.1021/acsami.5b05231
41. Frackowiak E., Metenier K., Bertagna V. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett., 2000, vol. 77, pp. 2421–2423. https://doi.org/10.1063/1.1290146
42. Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Graphene-based ultracapacitors. Nano Lett., 2008, vol. 8, pp. 3498–3502. https://doi.org/10.1021/nl802558y
43. Du X., Guo P., Song H., Chen X. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta, 2010, vol. 55, pp. 4812–4819. https://doi.org/10.1016/j.electacta.2010.03.047
44. Lv W., Tang D. M., He Y. B., You C.-H., Shi Z.Q., Chen X. C., Chen C.-M., Hou P.-X., Liu C., Yang Q.-H. Low-temperature exfoliated graphenes : Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano, 2009, vol. 3, pp. 3730–3736. https://doi.org/10.1021/nn900933u
45. Xu Y., Lin Z., Zhong X., Huang X., Weiss N. O., Huang Y., Duan X. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun., 2014, vol. 5, article no. 4554. https://doi.org/10.1038/ncomms5554
46. Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S. Carbon-based supercapacitors produced by activation of grapheme. Science, 2011, vol. 332, iss. 6037, pp. 1537–1541. https://doi.org/10.1126/science.1200770
47. Kim T., Jung G., Yoo S., Suh K. S., Ruoff R. S. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano, 2017, vol. 7, pp. 6899–6905. https://doi.org/10.1021/nn402077v
48. Liu Y., Shen Y., Sun L. C. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun., 2016, vol. 7, article no. 10921. https://doi.org/10.1038/ncomms10921
49. Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W. Nitrogen-doped graphene for high performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 2011, vol. 11, pp. 2472–2477. https://doi.org/10.1021/nl2009058
50. Zhao Y., Hu C., Hu Y., Cheng H., Shi G. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed., 2012, vol. 51, pp. 11371–11375. https://doi.org/10.1002/anie.201206554
51. Han J., Zhang L. L., Lee S., Oh J., Lee K.S., Potts J. R., Ji J., Zhao X., Ruoff R. S., Park S. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano, 2012, vol. 7, pp. 19–26. https://doi.org/10.1021/nn3034309
52. Wang C., Zhou Y., Sun L., Zhao Q., Zhang X., Wan P., Qiu J. N/P-codoped thermally reduced graphene for high-performance supercapacitor applications. J. Phys. Chem. C, 2013, vol. 117, pp. 14912–14919. https://doi.org/10.1021/jp4015959
53. Ke Q., Wang J. Graphene-based materials for supercapacitor electrodes : A review. J. Mater., 2016, vol. 2, pp. 37–54. https://doi.org/10.1016/j.jmat.2016.01.001
54. Ma Y., Chen Y. Three-dimensional graphene networks : Synthesis, properties and applications. Nat. Sci. Rev., 2015, vol. 2, pp. 40–53. https://doi.org/10.1093/nsr/nwu072
55. Zhao Z., Wang Z., Qiu J., Lin J., Xu D., Zhang C., Lv M., Yang X. Three dimensional graphene-based hydrogel/aerogel materials. Rev. Adv. Mater. Sci., 2014, vol. 36, pp. 137–151. https://doi.org/10.1039/C3TA10989E
56. Chen Y., Zhang X., Zhang D., Yu P., Ma Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011, vol. 49, pp. 573–580. https://doi.org/10.1016/j.carbon.2010.09.060
57. Zhang L., Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C, 2011, vol. 115, pp. 17206–17212. https://doi.org/10.1021/jp204036a
58. Jin Y., Huang S., Zhang M., Jia M., Hu D. A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent. Appl. Surf. Sci., 2011, vol. 268, pp. 541–546. https://doi.org/10.1016/j.apsusc.2013.01.004
59. Zhang L. L., Zhao X., Stoller M. D., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., Ruoff R. S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, vol. 12, pp. 1806–1812. https://doi.org/10.1021/nl203903z
60. Jung S. M., Mafra D. L., Lin C. T., Jung H. Y., Kong J. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, vol. 7, pp. 4386–4393. https://doi.org/10.1039/C4NR07564A
61. Zhu C., Liu T., Qian F., Han T. Y.J., Duoss E. B., Kuntz J. D., Spadaccini C. M., Worsley M. A., Li Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett., 2016, vol. 16, pp. 3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965