Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Hybrid Supercapacitors in Aqueous Electrolytes

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

A review of the current literature on hybrid supercapacitors (hybrid devices) in acid and alkaline electrolytes is presented.

The main trends in the development of modern hybrid carbon/PbO2 devices in sulphate electrolyte aimed at increasing the energy density, power, and cyclic durability consist in using a positive electrode of high amorphous or nanostructured lead dioxide (usually in the form of a thin film, nanowire). In addition, to improve the specific characteristics, it is proposed to use a carbon substrate for the positive electrode. Alternative carbon electrolytes, such as methanesulfonic acid, can be used in carbon/PbO2 devices.

In alkaline electrolyte, hybrid devices based on activated carbon and nickel oxide/hydroxide are used as negative and positive electrodes, respectively. Research has mainly focused on the production of nickel oxide in various ways, on the use of various substrates for the deposition of metal oxide, and on the use of electrodes, where the nickel in the positive electrode is partially replaced by cobalt, manganese, or zinc. Alternatively, the nickel in the electrode can be completely replaced by nanostructured cobalt hydroxide or bismuth oxide.

Literature

1. Brousse T., Belanger D., Long J. W. To Be or Not To Be Pseudocapacitive?. J. Electrochem. Soc., 2015, vol. 162, pp. A5185–A5189. DOI: https://doi.org/10.1149/2.0201505jes

2. Kёotz R., Carlen M. Principles and applications of electrochemical capaci-tors. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. DOI: https://doi.org/10.1016/S0013-4686(00)00345-6

3. Zheng J. P. The limitations of energy density of battery and doublelayer capacitor asymmetric cells. J. Electrochem. Soc., 2003, vol. 150, pp. A484–A492. DOI: https://doi.org/10.1149/1.1559067

4. Guillemet P., Dugas R., Scudeller Y., Brousse T. Electro-thermal analysis of a hybrid activated carbon/MnO2 aqueous electrochemical capacitor. 207th Meeting of the ElectroChemical Society. Quebec City, Canada, May, 15–20, 2005.

5. Dasoyan M. A., Aguf I. A. Sovremennaya teoriya svintsovogo akkumulyatora [Modern Lead Battery Theory]. Leningrad, Energiya Publ., 1975. 312 p. (in Russian).

6. Pell W. G., Conway B. E. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery type electrodes. J. Power Sources, 2004, vol. 136, pp. 334–345. DOI: https://doi.org/10.1016/j.jpowsour.2004.03.021

7. Varakin I. N., Klementov A. D., Litvinenko S. V., Starodubtsev N. F., Stepanov A. B. New ultracapacitors developed by JSC ESMA for various applications. Proceedings of the 8th international seminar on double-layer capacitors and similar devices. Deerfield Beach, FL, Florida Educational Seminars Inc., December 1998.

8. Toupin M., Bґelanger D., Hill I. R., Quinn D. Performance of experimental carbon blacks in aqueous supercapacitors. J. Power Sources, 2005, vol. 140, pp. 203–210. DOI: https://doi.org/10.1016/j.jpowsour.2004.08.014

9. Vol’fkovich Yu. M., Shmatko P. A. High Energy Supercapacitors. Proceeding of the, 8th international seminar on double layer capacitors and similar energy storage devices. Deerfield Beach, FL, 1998, special issue.

10. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–958.

11. Moseley P. T., Nelson R. F., Hollenkamp A. F. The role of carbon in valve-regulated lead–acid battery technology. J. Power Sources, 2006, vol. 157, pp. 3–10. DOI: https://doi.org/10.1016/j.jpowsour.2006.02.031

12. Cericola D., Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta, 2012, vol. 72, pp. 1–17. DOI: https://doi.org/10.1016/j.electacta.2012.03.151

13. Chen H., Cong T. N., Yang W., Tan C., Li Y., Ding Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci., 2009, vol. 19, pp. 291–312. DOI: https://doi.org/10.1016/j.pnsc.2008.07.014

14. Kazaryan S. A., Razumov S. N., Litvinenko S. V., Kharisov G. G., Kogan V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J. Electrochem. Soc., 2006, vol. 153, pp. A1655–А1671. DOI: https://doi.org/10.1149/1.2212057

15. Ni J., Wang H., Qu Y., Gao L. PbO2 electrodeposited on graphite for hybrid supercapacitor applications. Phys. Scr., 2013, vol. 87, no. 4. 045802. DOI: https://doi.org/10.1088/0031-8949/87/04/045802

16. Yu N., Gao L., Zhao S., Wang Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim. Acta, 2009, vol. 54, pp. 3835–3841. DOI: https://doi.org/10.1016/j.electacta.2009.01.086

17. Perret P., Brousse T., Bґelanger D., Guay D. Electrochemical template synthesis of ordered lead dioxide nanowires. J. Electrochem. Soc., 2009, vol. 156, pp. A645–A651. DOI: https://doi.org/10.1149/1.3139024

18. Pletcher D., Wills R. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) : Part II. Flow cell studies. Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 1779–1785. DOI: https://doi.org/10.1039/B401116C

19. Hazza A., Pletcher D., Wills R. A novel flow battery–A lead acid battery based on an electrolyte with soluble lead(II) : IV. The influence of additives. J. Power Sources, 2005, vol. 149, pp. 103–111. DOI: https://doi.org/10.1016/j.jpowsour.2005.01.049

20. Li X., Pletcher D., Walsh F. C. A novel flow battery : A lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode. Electrochim. Acta, 2009, vol. 54, pp. 4688–4695. DOI: https://doi.org/10.1016/j.electacta.2009.03.075

21. Pletcher D., Wills R. A novel flow battery–A lead acid battery based on an electrolyte with soluble lead(II) : III. The influence of conditions on battery per-formance. J. Power Sources, 2005, vol. 149, pp. 96–102. DOI: https://doi.org/10.1016/j.jpowsour.2005.01.048

22. Pletcher D., Zhou H., Kear G., Low C. T. J., Walsh F. C., Wills R. G. A. A novel flow battery–A lead-acid battery based on an electrolyte with soluble lead(II) : V. Studies of the lead negative electrode. J. Power Sources, 2008, vol. 180, pp. 621–629. DOI: https://doi.org/10.1016/j.jpowsour.2008.02.024

23. Pletcher D., Zhou H., Kear G., Low C. T. J., Walsh F. C., Wills R. G. A. A novel flow battery–A lead-acid battery based on an electrolyte with soluble lead (II) : Part VI. Studies of the lead dioxide positive electrode. J. Power Sources, 2008, vol. 180, pp. 630–634. DOI: https://doi.org/10.1016/j.jpowsour.2008.02.025

24. Perret P., Khani Z., Brousse T., Bélanger D., Guay D. Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochim. Acta, 2011, vol. 56, pp. 8122–8128. DOI: https://doi.org/10.1016/j.electacta.2011.05.125

25. Kopczyński K., Kolanowski Ł., Baraniak M., Lota K., Sierczyńska A., Lota G. Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors. Current Applied Physics, 2017, vol. 17, iss. 1, pp. 66–71. DOI: https://doi.org/10.1016/j.cap.2016.10.021

26. Wenli Zhang, Haibo Lin, Haishen Kong, Haiyan Lu, Zhe Yang, Tingting Liu. High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate. International Journal of Hydrogen Energy, 2014, vol. 39, iss. 30, pp. 17153–17161. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.039

27. Grgur B. N., Žeradjanin A., Gvozdenović M. M., Maksimović M. D., Trišović T. Lj., Jugović B. Z. Electrochemical characteristics of rechargeable polyaniline/lead dioxide cell. J. Power Sources, 2012, vol. 217, pp. 193–198. DOI: https://doi.org/10.1016/j.jpowsour.2012.06.025

28. Petersson I., Ahlberg E. Oxidation of electrodeposited lead–tin alloys in 5 M H2SO4. J. Power Sources, 2000, vol. 91, pp. 143–149. DOI: https://doi.org/10.1016/S0378-7753(00)00459-6

29. Lam L. T., Louey R. Development of ultra-battery for hybrid-electric vehicle applications. J. Power Sources, 2006, vol. 158, pp. 1140–1148. DOI: https://doi.org/10.1016/j.jpowsour.2006.03.022

30. Lam L. T., Louey R., Haigh N. P., Lim O. V., Vella D. G., Phyland C. G., Vu L. H., Furukawa J., Takada T., Monma D., Kano T. VRLA ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources, 2007, vol. 174, pp. 16–29. DOI: https://doi.org/10.1016/j.jpowsour.2007.05.047

31. Cooper A., Furakawa J., Lam L., Kellaway M. The UltraBattery‒a new battery design for a new beginning in hybrid electric vehicle energy storage. J. Power Sources, 2009, vol. 188, pp. 642–649. DOI: https://doi.org/10.1016/j.jpowsour.2008.11.119

32. Furukawa J., Takada T., Monma D., Lam L. T. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications. J. Power Sources, 2010, vol. 195, pp. 1241–1245. DOI: https://doi.org/10.1016/j.jpowsour.2009.08.080

33. Wu Zhang, Yao Hui Qu, Li Jun Gao. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate. Chinese Chemical Letters, 2012, vol. 23, iss. 5, pp. 623–626. DOI: https://doi.org/10.1016/j.cclet.2012.03.013

34. Conway B. E., Pell W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem., 2003, vol. 7, pp. 637–644. DOI: https://doi.org/10.1007/s10008-003-0395-7

35. Yu N., Gao L. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor. Electrochem. Commun., 2009, vol. 11, pp. 220–222.

36. Axion Power International Inc. Site. Available at: http://www.axionpower.com/ https://investorshub.advfn.com/Axion-Power-International-Inc-AXPWQ-3854/ http://www.axionpower.com/profiles/investor/fullpage.asp?f=1&BzID=1933&to=cp&Nav=0&LangID=1&s=0&ID=10294 (accessed 27 November 2018).

37. Beliakov A. L., Brintsev A. M. Development and Application of Combined Capacitors : Double Electric Layer–Pseudocapacity. Proceedings of the 7th International Seminar on Double-Layer Capacitors and Similar Energy Storage Devices. Florida Educational Seminars Inc., Deerfield Beach, FL, December 1997. Vol. 7.

38. Beliakov A. L. Technological aspects of reliability of electrochemical capacitors being used at heavy-duty operating conditions. Proceedings of the 8th international seminar on double-layer capacitors and similar Devices. Florida Educational Seminars Inc., Deerfield Beach, FL, December 1998.

39. Varakin I. N., Klementov A. D., Litvinenko S. V., Starodubtsev N. F., Stepanov A. B. New ultracapacitors developed by jsc esma for various applications. Proceedings of the 8th international seminar on double-layer capacitors and similar devices. Florida Educational Seminars Inc., Deerfield Beach, FL, December 1998.

40. Stepanov A. B., Varakin I. N., Menukhov V. V. Double layer capacitor. US Patent 5986876, 1999.

41. Burke A. Ultracapacitors : why, how, and where is the echnology. J. Power Sources, 2000, vol. 91, pp. 37–50. DOI: https://doi.org/10.1016/S0378-7753(00)004857 (in Russian).

42. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Electrochemical Energetics, 2001, vol. 1, no. 4, pp. 14–28 (in Russian).

43. Belyakov A. I. Electrochemical supercapacitors : their state-of-the-art and design problems. Electrochemical Energetics, 2006, vol. 6, no. 3, pp. 146–149 (in Russian).

44. Inoue H., Namba Y., Higuchi E. Preparation and haracterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors. J. Power Sources, 2010, vol. 195, pp. 6239–6244. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.018

45. Zhao Y., Lai Q. Y., Hao Y. J., Ji X. Y. Study of electrochemical performance for AC/(Ni1/3Co1/3Mn1/3)(OH)2. J. Alloys Compd., 2009, vol.~471, pp. 466–469. DOI: https://doi.org/10.1016/j.jallcom.2008.03.131

46. Wang H., Gao Q., Hu J. Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. J. Power Sources, 2010, vol. 195, pp. 3017–3024. DOI: https://doi.org/10.1016/j.jpowsour.2009.11.059

47. Liang Y.-Y., Li H.-L., Zhang X.-G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes. Mater. Sci. Eng. A, 2008, vol. 473, pp. 317–322. DOI: https://doi.org/10.1016/j.msea.2007.03.087

48. Kong L.-B., Liu M., Lang J.-W., Luo Y.-C., Kang L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J. Electrochem. Soc., 2009, vol. 156, iss. 12, pp. A1000–A1004. DOI: https://doi.org/10.1149/1.3236500

49. Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources, 2006, vol. 161, pp. 1479–1485. DOI: https://doi.org/10.1016/j.jpowsour.2006.05.036

50. Kolathodi M. S., Palei M., Natarajan T. S. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A, 2015, vol. 3, pp. 7513–7522. DOI: https://doi.org/10.1039/C4TA07075E

51. Ren X., Guo C., Xu L., Li T., Hou L., Wei Y. Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 19930–19940. DOI: https://doi.org/10.1021/acsami.5b04094

52. Yan J., Fan Z., Sun W., Ning G., Wei T., Zhang Q., Zhang R., Zhi L., Wei F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater., 2012, vol. 22, pp. 2632–2641. DOI: https://doi.org/10.1002/adfm.201102839

53. Ji J., Zhang L. L., Ji H., Li Y., Zhao X., Bai X., Fan X., Zhang F., Ruoff R. S. Nanoporous Ni(OH)2 thin film on 3d ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, vol. 7, pp. 6237–6243. DOI: https://doi.org/10.1021/nn4021955

54. Peng S., Li L., Wu H. B., Madhavi S., Lou X. W. D. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater., 2015, vol. 5, iss. 2, pp. 1401172. DOI: https://doi.org/10.1002/aenm.201401172

55. Cai F., Kang Y., Chen H., Chen M., Li Q. Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A, 2014, vol. 2, pp. 11509–11515. DOI: https://doi.org/10.1039/C4TA01235F

56. Dai C. S., Chien P. Y., Lin J. Y., Chou S. W., Wu W. K., Li P. H., Wu K. Y., Lin T. W. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 12168–12174. DOI: https://doi.org/10.1021/am404196s

57. Wang D.-W., Li F., Cheng H.-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources, 2008, vol. 185, pp. 1563–1568. DOI: https://doi.org/10.1016/j.jpowsour.2008.08.032

58. Kazarinov I. A., Volynskii V. V., Klyuev V. V., Novoselov M. A. From alkaline accumulators to supercapacitors. Nickel oxide electrode : Theory of processes and modern technologies of manufacture. Electrochemical Energetics, 2017, vol. 17, no. 4, pp. 173–224. DOI: https://doi.org/10.18500/1608-4039-2017-17-4-173-224 (in Russian).

59. Park J. H., Park O. O., Shin K. H., Jin C. S., Kim J. H. An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem. Solid-State Lett., 2002, vol. 5, iss. 2. pp. H7–H10. DOI: https://doi.org/10.1149/1.1432245

60. Jun Yan, Zhuangjun Fan, Wei Sun, Guoqing Ning, Tong Wei, Qiang Zhang, Rufan Zhang, Linjie Zhi, Fei Wei. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater., 2012, vol. 22, pp. 2632–2641 DOI: https://doi.org/10.1002/adfm.201102839

61. Feng Luan, Gongming Wang, Yichuan Ling, Xihong Lu, Hanyu Wang, Yexiang Tong, Xiao-Xia Liu, Yat Li. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale, 2013, vol. 5, pp. 7984–7990. DOI: https://doi.org/10.1039/c3nr02710d www.rsc.org/nanoscale

62. Zhe Tang, Chun-hua Tang, Hao Gong. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. Adv. Funct. Mater., 2012, vol. 22, pp. 1272–1278. DOI: https://doi.org/10.1002/adfm.201102796

63. Hailiang Wang, Yongye Liang, Tissaphern Mirfakhrai, Zhuo Chen, Hernan Sanchez Casalongue, Hongjie Dai. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res., 2011, vol. 4, iss. 8, pp. 729–736. DOI: https://doi.org/10.1007/s12274-011-0129-6

64. Wei Yu, Xinbing Jiang, Shujiang Ding, Ben Q. Li. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J. Power Sources, 2014, vol. 256, pp. 440–448. DOI: https://doi.org/10.1016/j.jpowsour.2013.12.110

65. Li R., Lin Z., Ba X., Li Y., Ding R., Liu J. Integrated copper–nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors. Nanoscale Horiz., 2016, vol. 1, iss. 2, pp.150–155. DOI: https://doi.org/10.1039/C5NH00100E

66. Hsing-Chi Chien, Wei-Yun Cheng, Yong-Hui Wang, Shih-Yuan Lu. Ultrahigh specifi c capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv. Funct. Mater., 2012, vol. 22, iss. 23, pp. 5038–5043. DOI: https://doi.org/10.1002/adfm.201201176

67. Linrui Hou, Ruiqi Bao, Muhammad Rehan, Liuniu Tong, Gang Pang, Xiaogang Zhang, Changzhou Yuan. Uniform hollow mesoporous nickel cobalt sulfide microdumbbells : a competitive electrode with exceptional gravimetric/volumetric pseudocapacitance for high-energy-density hybrid superapacitors. Adv. Electron. Mater., 2017, vol. 3, iss. 2, no. 1600322. DOI: https://doi.org/10.1002/aelm.201600322

68. Hou L., Shi Y., Zhu S., Pang G., Rehan M., Zhang X., Yuan C. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles : unusual formation and appealing pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A, 2017, vol. 5, pp. 133–144. DOI: https://doi.org/10.1039/C6TA05788H

69. Ferreira C. S., Passos R. R., Pocrifka L. A. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors. J. Power Sources, 2014, vol. 271, pp. 104–107. DOI: https://doi.org/10.1016/j.jpowsour.2014.07.164

70. Wang X., Li M., Chang Z., Wang Y., Chen B., Zhang L., Wu Y. Orientated Co3O4 nanocrystals on mwcnts as superior battery-type positive electrode material for a hybrid capacitor. J. Electrochem. Soc., 2015, vol. 162, pp. A1966–A1971. DOI: https://doi.org/10.1149/2.0041511jes

71. Tang C., Tang Z., Gong H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J. Electrochem. Soc., 2012, vol. 159, pp. A651–A656. DOI: https://doi.org/10.1149/2.074205jes

72. Yu X. Z., Lu B. G., Xu Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes. Adv. Mater., 2014, vol. 26, iss. 7, pp. 1044–1051. DOI: https://doi.org/10.1002/adma.201304148

73. Zeng Y., Han Y., Zhao Y., Zeng Y., Yu M., Liu Y., Tang H., Tong Y., Lu X. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater., 2015, vol. 5, no. 1402176. DOI: https://doi.org/10.1002/aenm.201402176

74. Lu X. F., Chen X. Y., Zhou W., Tong Y. X., Li G. R. α-Fe2O3@PANI Core–Shell nanowire arrays as negative electrodes for asymmetric supercapacitors ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 14843–14850. DOI: https://doi.org/10.1021/acsami.5b03126

75. Lin T. W., Dai C. S., Hung K. C. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D -nd Fe3O4/graphene composite electrodes. Sci. Rep., 2014, vol. 4, 7274. DOI: https://doi.org/10.1038/srep07274

76. Wang Y., Shen C., Niu L., Li R., Guo H., Shi Y., Li C., Liu X., Gong Y. Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A, 2016, vol. 4, pp. 9977–9985. DOI: https://doi.org/10.1039/C6TA02950G.

77. Yang S., Song X., Zhang P., Sun J., Gao L. Self-assemblend α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small, 2014, vol. 10, pp. 2270–2279.

78. Wang D., Li Y., Wang Q., Wang T. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J. Solid State Electrochem., 2012, vol. 16, pp. 2095–2102. DOI: https://doi.org/10.1007/s10008-011-1620-4

79. Li R. Z., Wang Y. M., Zhou C., Wang C., Ba X., Li Y. Y., Huang X. T., Liu J. P. Carbon-Stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery–supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater., 2015, vol. 25, pp. 5384–5394. https://doi.org/10.1002/adfm.201502265

80. Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources, 2006, vol. 161, pp. 1479–1485. DOI: https://doi.org/10.1016/j.jpowsour.2006.05.036

81. Li L., Zhang X., Zhang Z., Zhang M., Cong L., Pan Y., Lin S. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film : a free-standing negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A, 2016, vol. 4, pp. 16635–16644. DOI: https://doi.org/10.1039/C6TA06755G

82. Su H., Cao S., Xia N., Huang X., Yan J., Liang Q., Yuan D. Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties. J. Appl. Electrochem., 2014, vol. 44, pp. 735–740. DOI: https://doi.org/10.1007/s10800-014-0681-3

83. Senthilkumar S. T., Selvan R. K., Ulaganathan M., Melo J. S. Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim. Acta, 2014, vol. 115, pp. 518–524. DOI: https://doi.org/10.1016/j.electacta.2013.10.199

84. Zuo W., Zhu W., Zhao D., Sun Y., Li Y., Liu J., Lou X. W. Bismuth oxide : a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci., 2016, vol. 9, pp. 2881–2891. DOI: https://10.1039/C6EE01871H

85. Qu D., Wang L., Zheng D., Xiao L., Deng B., Qu D. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes. J. Power Sources, 2014, vol. 269, pp. 129–135. DOI: https://doi.org/10.1016/j.jpowsour.2014.06.084

Heading: 
Full Text (PDF):
(downloads: 601)