Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Acid batteries

Influence of a suspension of particles of the positive active material on negative lugs corrosion

Influence of a suspension of particles of the positive active material (PAM) in electrolyte on operation of the negative plate of the lead-acid battery is studied. The significant increase in speed of corrosion of a lead plate in case of contact of particles of PAM with its surface that can lead to appearance macro-defects on lugs of the negative plates is demonstrated.

Influence of pressure on structural characteristics of separation materials and oxygen ionization rate in the electrode block of the lead-acid accumulator

In this article was studied pressure influence in the electrode block of the model of the lead-acid accumulator on the most important physical properties (a specific surface, pore size distribution, compression properties, speed of capillary lifting of electrolyte) of absorbent glass mat separators of the trademarks «Hollingsworth» (USA) and "Bernard Dumas"(France) and on efficiency of an oxygen cycle. It is shown that the highest compression properties separators with a high specific surface (7-10 m2/g) possess. The increase of pressure in the electrode block conducts to pores size redistribution towards decrease in a share of a pore with a radius of 10-15 microns and increase in a share of smaller pore with radius of 1-5 microns. Observed reduction of a share of a large pore explains decrease in height and speed of lifting of electrolyte with higher pressure in the electrode block. The increase of pressure in the electrode block to 50 kPa leads to decrease oxygen ionization rate on a lead electrode.

Anodic passivation mechanism of lead-tin alloys in sulfuric acid solution

The process of formation of a passivating sulphatic film on electrodes made of lead-tin alloys was studied by voltammetry. This process was established to proceed under diffusive control and to be limited to mass transfer in the anode film. At anodic dissolution of lead-tin alloys, there proceeds active dissolution of tin which collects inside the anode film and passes to solution. Owing to the formation of a more porous sulphatic film on the surface of a tin-containing alloy, the constant of diffusive process increases.

Pages