Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

conductivity

Electrophysical properties of ceramic materials based on manganese-containing potassium polytitanates

The new materials obtained in the potassium polytitanate (PPT)–MnSO4 system by modifying PPT in aqueous solutions of manganese sulfate of various concentrations, followed by thermal treatment and annealing at 1080°C, were synthesized and studied. The phase composition of the obtained materials was determined. Their electrochemical and electrophysical properties in the temperature range from 250 to 700°C were studied.

Nonlinear effects in a cell with a solid electrolyte based on protonated potassium polytitanate

In this paper, the electrochemical and electrophysical properties of protonated potassium polytitanate synthesized at pH values varying from 3.11 to 8.88 depending on the magnitude of the polarization voltage and the magnitude of the measured signal were studied by the method of impedance spectroscopy. The values of effective conductivity, relaxation times, frequency dependences of the loss tangent, and dielectric permittivity are determined.

Solid proton-conducting ceramic electrolyte for energy storage units

The paper considers the electrochemical properties of potassium polytitanate synthesized at the values of pH varying from 3 to 8 in a wide temperature range from  − 26 to  + 80°C. The conductivity values and the activation energy were determined with the help of the method of impedance spectroscopy. The application of the obtained material used as a ceramic solid electrolyte in the energy storage units operating at low temperatures in the Far North is considered in the article.

Influence of synthesis conditions on electrophysical properties of layered potassium polytitanates

The influence of the pH value in the dispersions during washing the potassium polytitanate powder (PPT) after its molten salt synthesis on electrical properties of the obtained product, namely conductivity, permittivity and tangent of dielectric losses. It is established that the samples obtained in weakly alkaline conditions (pH = 7.44 and 8.50), are characterized by higher values of low-frequency conductivity and dielectric permittivity (up to 10^{5), low value of the relaxation time (0.112 and 0.358, respectively).

Comparison of traditional organic solvents with phosphoric acid esters in lithium-ion and supercapacitor technologies

This work is dedicated to phosphoric acid esters working as solvents for lithium-ion and supercapacitor (SC) electrolyte. The electrical conductivity of electrolytes based on phosphoric acid esters, lithium salts, commonly used in lithium-ion batteries (LIB), and salts used in SC technology was measured. The thermodynamic stability of new electrolytes in comparison with other solvents used in chemical power sources technology was also estimated. It was shown that the thermodynamic stability of phosphoric acid ester increases in a homologous series.

The study of the electrochemical and electrical properties of the potassium polytitanate intercalated by AgI using impedance spectroscopy

The new composite material on the basis of polytitanates of potassium and the ionic conductor of iodide of silver with extremely high dielectric permeability is synthesized. Impedance and dielectric characteristics of the received material are investigated.

Study of electrolyte composition effect on the properties of oxide solar cells

Properties of Dye Solar Cells with quasi solid electrolytes based on PEG have been investigated. The attempts to enhance the electrolyte conductivity was made with Li electrolyte introduction.

Organic esters of phosphoric acid as solvents for the electrolyte for lithium-ion systems and supercapacitors

The possibility of using organic esters of phosphoric acid as a solvents for the electrolyte for lithium-ion systems and supercapacitors was investigated. Supercapacitors based on activated carbon Norit Supra and on the electrolyte being studied showed fine electrochemical performance which is comparable with standard electrolytes based on propylene carbonate. Lithium-ion batteries (Li4Ti5O12-LiNiO2 system) also showed a good performance. The conductivity of electrolytes based on tributyl phosphate was measured, as well as its thermodynamic stability was estimated.