Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrophysical properties of ceramic materials based on manganese-containing potassium polytitanates

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The new materials obtained in the potassium polytitanate (PPT)–MnSO4 system by modifying PPT in aqueous solutions of manganese sulfate of various concentrations, followed by thermal treatment and annealing at 1080°C, were synthesized and studied. The phase composition of the obtained materials was determined. Their electrochemical and electrophysical properties in the temperature range from 250 to 700°C were studied. The maximum volumetric and intergranular conductivities of the obtained materials were observed at 250°C (9 ⋅ 10−4 and 6 ⋅ 10−4 S/cm, respectively) in the samples containing 25 wt.% MnO. The value of the activation energy of the conductivity in the volume of grains and grain boundaries was 0.37 and 0.45 eV, respectively. It was shown that the permittivity at the frequency of 1 kHz varies from 103 to 5 ⋅ 105 depending on the temperature and manganese oxide content.

Literature

1. Schmid H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter., 2008, vol. 20, pp. 434201–434224. https://doi.org/10.1088/0953-8984/20/43/434201

2. Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics, 2009, vol. 2, pp. 20. https://doi.org/10.1103/Physics.2.20

3. Shung K. K., Cannata J. M., Zhou Q. F. Piezoelectric materials for high frequency medical imaging applications: A review. J. Electroceram., 2007, vol. 19, pp. 141–147. https://doi.org/10.1007/s10832-007-9044-3

4. Sanchez-Monjaras T., Gorokhovsky A., Escalante-Garcia J. I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. Journal of the American Ceramic Society, 2008, vol. 91, no. 9, pp. 3058–3065. https://doi.org/10.1111/j.1551-2916.2008.02574.x

5. Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Fedorov F. S., Tretychenko E. V., Sevrugin A. V. Data on electrical properties of nickel modified potassium polytitanates compacted powders. Data in Brief, 2015, vol. 4, pp. 193–198. https://doi.org/10.1016/j.dib.2015.05.010

6. Goffman V. G., Gorokhovsky A. V., Kompan M. E., Gorshkov N. V., Sleptsov V. V., Kovnev A. V., Kovyneva N. N. Impedance spectroscopy of potassium polytitanate modified with cobalt(II) sulfate. The area of high temperatures. Electrochemical Energetics, 2015, vol. 15, no. 2, pp. 64–70 (in Russian).

7. Gorokhovskii A. V., Goffman V. G., Gorshkov N. V., Tret’yachenko E. V., Telegina O. S., Sevryugin A. V. Electrophysical properties of ceramic articles based on potassium polytitanate nanopowder modified by iron compounds. Glass and Ceramics, 2015, vol. 72, no. 1–2, pp. 54–56. https://doi.org/10.1007/s10717-015-9722-6

8. Goffman V. G., Gorokhovsky A. V., Kompan M. M., Tretyachenko E. V., Telegina O. S., Kovnev A. V., Fedorov F. S. Electrical properties of the potassium polytitanate compacts. Journal of Alloys and Compounds, 2014, vol. 615, pp. S526–S529. https://doi.org/10.1016/j.jallcom.2014.01.121

9. Kovnev A. V., Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Kompan M. E., Telegina O. S., Baranov A. M. Impedance spectroscopy of potassium polytitanate modified with cobalt salts. Electrochemical Energetics, 2014, vol. 14, no. 3, pp. 149–157 (in Russian).

10. Scribner Associates, Inc. Available at: https://www.scribner.com (accessed 12 Octoberer 2022).

11. Zidi N., Chaouchi A., Rguiti M., Lorgouilloux Y., Courtois C. Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 − x%(K0.5Bi0.5)TiO3 lead-free ceramics. Ferroelectrics, 2019, vol. 551, no. 1, pp. 152–177. https://doi.org/10.1080/00150193.2019.1658043

12. Goffman V. G., Mikhailova A. M., Toporov D. V., Telegina O. S. Diffusion processes in a silver-conducting solid electrolyte in the concept of the Grafov–Ukshe model of adsorption relaxation of a double layer. Electrochemistry, 2007, vol. 43, no. 6, pp. 657–664 (in Russian).

13. Ivanov-Shits A. K., Murin I. V. Ionics of the solid body. Saint Petersburg, Izd-vo SPbGU, 2000. 616 p. (in Russian).

14. Ihlefeld J. F., Clem P. G., Doyle B. L., Kotula P. G., Fenton K. R., Apblett C. A. Fast lithium‐ion conducting thin‐film electrolytes integrated directly on flexible substrates for high‐power solid‐state batteries. Advanced Materials, 2011, vol. 23, no. 47, pp. 5663–5667. https://doi.org/10.1002/adma.201102980

15. Maurya R. K., Sharma P., Patel A., Bindu R. Direct evidence of the existence of Mn3+ ions in MnTiO3. EPL (Europhysics Letters), 2017, vol. 119, no. 3, article no. 37001. https://doi.org/10.1209/0295-5075/119/37001

16. Choudhury R. N. P., Pati B., Das P. R., Dash R. R., Paul A. Development of electronic and electrical materials from indian ilmenite. Journal of Electronic Materials, 2013, vol. 42, no. 4, pp. 769–782. https://doi.org/10.1007/s11664-012-2465-z

Full Text (PDF):
(downloads: 46)