Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

titanium dioxide

Manganese-Doped Titanium Dioxide with Improved Electrochemical Performance for Lithium-Ion Batteries

Within the work, an influence of manganese dopant on electrochemical performance of anatase titanium dioxide (Mn/Ti = 0.05; 0.1; 0.2) had been investigated. It was established that incorporation of Mn3+ into the TiO2 lattice results in the formation of Ti1 − xMnxO2 solid solution and increased anatase unit cell volume from 136.41 Å3 (undoped sample) to 137.25 Å3 (Mn/Ti = 0.05). The conductivity of doped TiO2 rises up to two orders in magnitude.

Nanostructured TiO2–TiOF2 composite as anode material for Li-ion battery

TiO2–TiOF2 composite has been synthesized in plasma by the unique method of pulsed high-voltage discharge due to the destruction of Ti electrodes and polytetrafluoroethylene wire. TiO2–TiOF2 features have been investigated by scanning electron microscopy, X-ray diffraction, infrared spectroscopy, energy-dispersive X-ray analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that composite with a porous surface morphology includes the nanocrystallites of sizes ranging from 40 to 200 nm. The average diameter of the pore is 3–5 nm. Electrochemical characterization of the nanostructured porous TiO2–TiOF2 composite was carried out in view of its application as an anode-active material for Li-ion battery. The initial high specific capacity of the composite is equal up to 1370 mA·h g–1 at a rate of 20 mA g–1. It is higher (due to the TiO2 presence) in comparison with up-to-date TiOF2 anode materials. Galvanostatic charge–discharge cycling of the Li/TiO2–TiOF2 cell in the range of 3.0–0.005 V yields 205 mA·h g–1 after 20 cycles.