Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Nanostructured TiO2–TiOF2 composite as anode material for Li-ion battery

TiO2–TiOF2 composite has been synthesized in plasma by the unique method of pulsed high-voltage discharge due to the destruction of Ti electrodes and polytetrafluoroethylene wire. TiO2–TiOF2 features have been investigated by scanning electron microscopy, X-ray diffraction, infrared spectroscopy, energy-dispersive X-ray analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that composite with a porous surface morphology includes the nanocrystallites of sizes ranging from 40 to 200 nm. The average diameter of the pore is 3–5 nm. Electrochemical characterization of the nanostructured porous TiO2–TiOF2 composite was carried out in view of its application as an anode-active material for Li-ion battery. The initial high specific capacity of the composite is equal up to 1370 mA·h g–1 at a rate of 20 mA g–1. It is higher (due to the TiO2 presence) in comparison with up-to-date TiOF2 anode materials. Galvanostatic charge–discharge cycling of the Li/TiO2–TiOF2 cell in the range of 3.0–0.005 V yields 205 mA·h g–1 after 20 cycles.

Literature

1. Li S., Chen C., Fu K., Xue L., Zhao C., Zhang S., Hu Y., Zhou L., Zhang X. Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries. Solid State Ionics. 2014, vol. 254, pp. 17–26.
2. Hu Y., Xu K., Kong L., Jiang H., Zhang L., Li C. Flame synthesis of single crystalline SnO nanoplatelets for lithium-ion batteries. Chem. Eng. J. 2014, vol. 242, pp. 220–225.
3. Harada Y., Hoshina K., Inagaki H., Takami N. Influence of synthesis conditions on crystal formation and andelectrochemical properties of TiO2(B) particles as anode materials for lithium-ion batteries. Electrochim. Acta. 2013, vol. 112, pp. 310–317.
4. Wang D., Wu X., Zhang Y., Wang J., Yan P., Zhang C., He D. The influence of the TiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery. Ceram. Intern. 2014, vol. 40, pp. 3799–3804.
5. Berdnikov A. E., Gerashchenko V. N., Gusev V. N., Kulova T. L., Metlitskaya A. V., Mironenko A. A., Rudyi A. S., Skundin A. M. A silicon-containing nanocomposite for a thin-film lithium-ion battery. Tech. Phys. Lett. 2013, vol. 39, pp. 350–352 (in Russian).
6. Ryu W. H., Nam D. H., Ko Y. S., Kim R. H., Kwon H. S. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim. Acta. 2012, vol. 61, pp. 19–24.
7. Kulova T. L. New electrode materials for lithium-ion batteries (Review). Rus. J. Electrochem. 2013, vol. 49, pp. 1–25.
8. Tsivadze A. Yu., Kulova T. L., Skundin A. M. Fundamental problems of lithium-ion rechargeable batteries. Prot. Met. Phys. Chem. Surf. 2013, vol. 49, pp. 145–150.
9. Schweikert N., Hahn H., Indris S. Cycling behaviour of Li/Li4Ti5O12 cells studied by electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2011, vol. 13, pp. 6234–6240.
10. Alviev Kh. Kh. The effect of discharge current upon cаpacity of lithium nano-titanate. Elektrokhimicheskaya energetika [Electrochemical energetics]. 2013, vol. 13, no. 4. pp. 219–224 (in Russian).
11. Ren Z., Chen C., Fu X., Wang J., Fan C., Qian G., Wang Z. TiO2/C composites nanorods synthesized by internal-reflux method for lithium-ion battery anode materials. Mater. Lett. 2014, vol. 17, pp. 124–127.
12. Kulova T. L., Skundin A. M. Electrode materials for lithium-ion batteries of new generation. Rus. J. Electrochem. 2012, vol. 48, pp. 330–335.
13. Kotsyubynsky V. O., Chelyadyn V. L., Il'nyts'ky R. V., Myronyuk I. F., Moklyak V. V., Kolkovsky P. I. Kinetics of the electrochemical intercalation of Li+ into anatase, prepared by zol-gel method. Elektrokhimicheskaya energetika [Electrochemical energetics]. 2011, vol. 11, no. 4. pp. 179–183 (in Russian).
14. Tsvetnikov A. K., Opra D. P., Matvienko L. A., Sinebryukhov S. L., Gnedenkov S. V., Sergienko V. I. Sposob puluchenija nanodispersnogo ftororganicheskogo materiala [Synthesis of nanodispersed fluoroorganic material]. Patent RF 2482571, 2013.
15. Kuryavyi V. G. Nanoobjects in powders obtained by the destruction of different electrodes in plasma of high-voltage discharge. Vestnik DVO RAN [Bulletin of FEB RAS]. 2011. vol. 159, no. 5, pp. 36–44 (in Russian).
16. Shian S., Sandhage K. H. A gas-tight CuKα X-ray transparent reaction chamber for high-temperature X-ray diffraction analyses of halide gas/solid reactions. Rev. Sci. Instrum. 2009, vol. 80, p. 115108.
17. Zhang Y., Gregg D. J., Lumpkin G. R., Begg B. D., Jovanovic M. The incorporation of neptunium and plutonium in thorutite (ThTi2O6). J. Alloy. Compd. 2013, vol. 581, pp. 665–670.
18. Cui B., Sa R., Jayaseelan D. D., Inam F., Reece M. J., Lee W. E. Microstructural evolution during high-temperature oxidation of Ti2AlN ceramics. Adv. Sci. Tech. 2010, vol. 65, pp. 106–111.
19. He Z., Que W., Chen J., He Y., Wang G. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermaltreatment: XPS and FTIR characterization. J. Phys. Chem. Solids. 2013, vol. 74, pp. 924–928.
20. Zeng Y., Zhang W., Xu C., Xiao N., Huang Y., Yu D. Y., Hng H. H., Yan Q. One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high lithium-ion battery performance. Chem.: Eur. J. 2012, vol. 18, pp. 4026–4030.
21. Laptash N. M., Maslennikova I. G., Kaidalova T. A. Ammonium oxofluorotitanates. J. Fluorine Chem. 1999, vol. 99, pp. 133–137.
22. Swamy V., Kuznetsov A., Dubrovinsky L. S., Caruso R. A., Shchukin D. G., Muddle B. C. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys. Rev. B. 2005, vol. 71, pp. 184302–184313.
23. Shul'ga Y. M., Matyushenko D. V., Kabachkov E. N., Kolesnikova A. M., Kurkin E. N., Domashnev I. A., Brichkin S. B. Correlation between the Eg(1) oscillation frequency and half-width of the (101) peak in the X-ray diffraction pattern of TiO2 anatase nanoparticles. Tech. Phys. Rus. J. Appl. Phys. 2010, vol. 55, no. 1, pp. 141–143.
24. Shul'ga Y. M., Kabachkov E. N., Matyushenko D. V., Kurkin E. N., Domashnev I. A. Thermally stimulated transformations in brookite-containing TiO2 nanopowders produced by the hydrolysis of TiCl4. Tech. Phys. Rus. J. Appl. Phys. 2011, vol. 56, no. 1. pp. 97–101.
25. Wen C. Z., Hu Q. H., Guo Y. N., Gong X. Q., Qiao S. Z. From titanium oxydifluoride (TiOF2) to titania (TiO2): phase transition and non-metal doping with enhanced photocatalytic hydrogen (H2) evolution properties. Chem. Commun. 2011, vol. 47, pp. 6138–6140.
26. Gnedenkov S. V., Opra D. P., Sinebryukhov S. L., Tsvetnikov А. К., Ustinov А. Yu., Sergienko V. I. Lithium batteries based on hydrolysis lignin. Elektrokhimicheskaya energetika [Electrochemical energetics]. 2013. vol. 13, no. 1. pp. 23–33 (in Russian).
27. Li D., Haneda H., Hishita S., Ohashi N., Labhsetwar N. K. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem. 2005, vol. 126, pp. 69–77.
28. Liang Y. Q., Cui Z. D., Zhu S. L., Liu Y., Yang X. J. Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation. J. Catal. 2011, vol. 278, pp. 276–287.
29. Gnedenkov S. V., Opra D. P., Sinebryukhov S. L., Tsvetnikov A. K., Ustinov A. Y., Sergienko V. I. Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery. J. Ind. Eng. Chem. 2014, vol. 20, pp. 903–910.
30. Reddy M. V., Madhavi S., Rao G. V. S., Chowdari B. V. R. Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries. J. Power Sources. 2006, vol. 162, pp. 1312–1321.
31. Chen L., Shen L., Nie P., Zhang X., Li H. Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battery. Electrochim. Acta. 2012, vol. 62, pp. 408–415.
32. Beznosov S. N., Pyatibratov M. G., Fedorov O. V., Kulova T. L., Skundin A. M. Electrochemical properties of nanostructured material based on modified flagella of halophilic archaea Halobacterium salinarum for negative electrode of lithium-ion battery. Nanotechnologies Rus. 2011, vol. 6, pp. 705–710 (in Russian).
33. Subramanian V., Karki A., Gnanasekar K. I., Eddy F. P., Rambabu B. Nanocrystalline TiO2 (anatase) for Li-ion batteries. J. Power Sources. 2006, vol. 159, pp. 186–192.
34. Choi M. G., Lee Y. G., Song S. W., Kim K. M. Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim. Acta. 2010, vol. 55, pp. 5975–5983.

Full Text (PDF):
(downloads: 62)