Electrochemical behavior of superfine carbon in electrolytes based on ionic liquid 1-methyl-3-butylimidazol tetrafluorborate
A various features of the electrochemical behavior of number superfine carbon materials in electrolyte based on an ionic liquid 1-methyl-3-butilimidazolium tetrafluorineborate (1Me3BuImBF4) were determined by voltammetry and impedance methods. A comparative analysis of the effect of the type and nature of the electrolyte material on the main electrochemical characteristics of carbon electrodes which may be used in supercapacitors was done. The effect of the impurities of water in the ionic liquid, as well as the influence of the crystal, semiconductor and structural properties of carbon materials to their electrochemical behavior was shown. A simplified equivalent circuit describing the impedance of superfine electrodes in ionic liquid was proposed. Data obtained by using the reference method of contact porosimetry and X-ray photoemission analysis can be used for the optimization of the activated carbon. Activated carbon is the most common used material for supercapacitors.
1. Conway B. E. Electrochemical supercapacitors. Scientific fundamentals and technological applications. N. Y., Kluwer Academic Plenum Publ., 1999, 698 p.
2. Vol'fkovich Yu. М., Serdyuk T. M. Electrochemical condensers. Rus. J. Electrochem., 2002, vol. 38, no 9, pp. 935–959 (in Russian).
3. D'yachkov P. N. Uglerodnye nanotrubki. Stroenie, svojstva, primeneniya [Carbon nanotubes Structure, properties, applications]. Moscow, BINOM Publ., 2006, 376 p. (in Russian).
4. Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S. Carbon–based supercapacitors produced by activation of graphene. Science, 2011, vol. 332, pp. 1537–1541.
5. Shulga Y. M., Baskakov S. A., Abalyaeva V. V., Efimov O. N., Shulga N. Y., Michtchenko A., Lartundo-Rojas L., Moreno L. A., Cabaсas-Moreno J. G., Vasilets V. N. Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J. Power Sources, 2013, vol. 224, pp. 195–201.
6. Galinski M., Lewandowskki A., Stepniak I. Ionic liquids as electrolytes. Electrochim. Acta, 2006, vol. 51, pp. 5567–5580.
7. Kroon M. C., Buijs W., Peters C. J., Witkamp G.-J. Decomposition of ionic liquids in electrochemical processing. Green Chem., 2006, vol. 8, pp. 241–245.
8. Izmajlova M. Yu., Rychagov A. Yu., Den'shchikov K. K., Vol'fkovich Yu. M., Vygodskij Ya. S., Lozinskaya E. I. Electrochemical supercapacitor with electrolyte based on an ionic liquid. Rus. J. Electrochem., 2009, vol. 45, no. 8, pp. 949–950 (in Russian).
9. Rychagov A. Yu., Vol'fkovich Yu. M., Vorotyncev M. A., Kvacheva L. D., Konev D. V., Krestinin N. V., Kryazhev Yu. G., Kuznecov V. L., Kukushkina Yu. A., Muhin V. M., Sokolov V. V., Chervonobrodov S. P. Perspektivnye uglerodnye materialy dlya superkondensatorov[Perspective carbon materials for supercapacitors]. Elektrohimicheskaya ehnergetika [Electrochemical energetics], 2012, vol. 12, no 4, pp. 167–180. (in Russian).
10. Rychagov A. Yu., Vol'fkovich Yu. M. Low–reversible charging processes on highly dispersed carbon electrodes. Rus. J. Electrochem., 2009, vol. 45, no 3, pp. 304–311 (in Russian).
11. Vol'fkovich Yu. M., Bagotzky V. S., Sosenkin V. E., Blinov I. A. The standard contact porosimetry. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2001, vol. 187. pp. 349–365.
12. El-Merraoui M., Tamai H., Yasuda H., Kanata T., Monori J., Nadai K., Kaneko K. Pore structures of activated carbon fibers from organometallics/pitch composites by nitrogen adsorption. Carbon, 1998, vol. 36, no 12, pp. 1769–1776.
13. Samant P. V., Goncalves F., Freitas M. M. A., Pereiram M. F. R., Figueired J. L. Preparation and modification of activated carbon fibres by microwave heating. Carbon, 2004, vol. 42, pp. 1315–1320.
14. Ruch P. W., Hardwick L. J., Hahn M., Foelske A., Kotz R., Wokaun A. Electrochemical doping of single-walled carbon nanotubes in double layer capacitors studied by in situ Raman spectroscopy. Carbon, 2009, vol. 47, pp. 38–52.
15. Al-Zubaidi A., Inoue T., Matsushita T., Ishii Y., Hashimoto T., Kawasaki S. Cyclic voltammogram profile of single-walled carbon nanotube electric double-layer capacitor electrode reveals dumbbell shape. J. Phys. Chem. C., 2012, vol. 116, pp. 7681–7686.
16. Pichler T., Knupfer M., Golden M. S., Fink J. Localized and delocalized electronic states in single-wall carbon nanotubes. Phys. Rev. Let.,1998, vol. 80, no. 21, pp. 4729–4732.
17. Tarasevich M. R. Elektrohimiya uglerodnyh materialov [Electrochemistry of carbon materials]. Moscow, Nauka Publ, 1984. 251 p.
18. Beguin F., Szostak K., Lota G, Frackowiak E. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv. Mater., 2005, vol. 17, pp. 238–2384.
19. Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., Berguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon. 2005, vol. 43, pp. 1293–1302.
20. Ue M., Ida K., Mori S. Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors. J. Electrochem. Soc., 1994, vol. 141, pp. 2989–2996.
21. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, vol. 313, pp. 1760–1763.
22. Balducci A., Dugasa R., Taberna P. L., Simona P., Plee D., Mastragostino M., Passerini S. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources, 2007, vol. 165, pp. 922–927.
23. Pandolfo A. G., Hollenkamp A. F. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, vol. 157, pp. 11–27.