Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrochemical oxidation of borohydride-ion on nickel electrode: a study by the method of ir-spectroscopy

The study of the anodic oxidation of borohydride-ion BH4 on catalytically active nickel electrode by methods of potentiostatic inclusion, galvanostatically inclusion, cyclic voltammetry and infrared spectroscopy with Fourier transformation. The composition of some intermediates of the process of electrochemical oxidation of BH4 and the mechanism of decomposition of borohydride, which includes the following basic stages: BH4 → BH3(OH) → BH2(OH)2 → BH(OH)3 → B(OH)4, is determined. The regularities of the kinetics of the electrochemical oxidation of BH4 – ion Ni-electrode is determined. The diffusion coefficient BH4 ion in aqueous solution at a temperature of 25°C, measured by electrochemical methods, ranges from 5.3·10–5 to 1.6·10–5, the average value of 2·10–5 cm2/s.

Literature

1. Finkelstein D. A., Mota N. D., Cohen J. I., Abruna H. D. Rotating disk electrode (RDE) investigation of BH4 and BH3OH electro-oxidation at Pt and Au: implications for BH4 fuel cell. J. Phys. Chem. C. 2009, vol. 113, pp. 19700–19712.
2. Iotov Ph. I., Kalcheva S. V., Bond A. M. Kinetic and mechanistic evaluation of tetrahydroborate ion electro-oxidation at polycrystalline gold. Electrochimica Acta. 2009, vol. 54, pp. 7236–7241.
3. Amendola St. A., Onnerud P., Kelly M. T., Petillo Ph. J., Sharp-Goldman St. L., Binder M. A novel high power density borohydride-air cell. J. Power Sources. 1999, vol. 84, pp. 130–133.
4. Churikov A. V., Gamayunova I. M., Zapsis K. V., Churikov M. A., Ivanishchev A. V. Influence of temperature and alkalinity on the hydrolysis rate of borohydride ions in aqueous solution. Intern. J. Hydrogen Energy. 2012, vol. 37, iss. 1, pp. 335–344.
5. Churikov A. V., Ivanishchev A. V., Zapsis K. V., Sychova V. O. Toplivnye elementy, ispol'zuyuschie borogidridnoe toplivo [Fuel cells using fuel borohydride]. Elektrokhimicheskaya Energetika [Electrochemical energetics]. 2009, vol. 9, no. 3, pp. 117–127. (in Russian).
6. Churikov A. V., Zapsis K. V., Ivanishchev A. V., Sychova V. O. Temperature-induced transformation of the phase diagrams of ternary systems NaBH4 + NaOH + H2O and KBH4 + KOH + H2O. J. Chem. & Eng. Data. 2011, vol. 56, no.5, pp. 2543–2552.
7. Churikov A. V., Zapsis K. V., Khramkov V. V., Churikov M. A., Gamayunova I. M. Temperature-induced transformation of the phase diagrams of ternary systems NaBO2 + NaOH + H2O and KBO2 + KOH + H2O. J. Chem. & Eng. Data. 2011, vol. 56, no. 3, pp. 383–389.
8. Churikov A. V., Zapsis K. V., Khramkov V. V., Churikov M. A., Smotrov M. P., Kazarinov I. A. Phase diagrams of ternary systems NaBH4 + NaOH + H2O, KBH4 + KOH + H2O, NaBO2 + NaOH + H2O, and KBO2 + KOH + H2O at –10 ?C. J. Chem. & Eng. Data. 2011, vol. 56, no. 1, pp. 9–13.
9. Churikov A. V., Zapsis K. V., Khramkov V. V., Churikov M. A., Gamayunova I. M. Vliyanie temperatury na rastvorimost' trehkomponentnyh sistem NaBO2–NaOH–H2O i KBO2–KOH–H2O [Temperature-induced transformation of the phase diagrams of ternary systems NaBO2 + NaOH + H2O and KBO2 + KOH + H2O]. Elektrokhimicheskaya Energetika [Electrochemical energetics]. 2011, vol. 11, no. 1, pp. 3–12 (in Russian).
10. Churikov A. V., Zapsis K. V., Khramkov V. V., Smotrov M. P., Churikov M. A., Kazarinov I. A. Diagrammy rastvorimosti troynyh sistem NaBH4–NaOH–H2O, KBH4–KOH–H2O, NaBO2–NaOH–H2O i KBO2–KOH–H2O pri –10°C [Phase diagrams of ternary systems NaBH4 + NaOH + H2O, KBH4 + KOH + H2O, NaBO2 + NaOH + H2O, and KBO2 + KOH + H2O at –10 ?C]. Elektrokhimicheskaya Energetika [Electrochemical energetics]. 2010, vol. 10, no. 4, pp. 170–176 (in Russian).
11. Santos D. M.F., Sequeira C. A.C. Sodium borohydride as a fuel for the future. Renewable and Sustainable Energy Reviews. 2011, vol. 15, pp. 3980–4001.
12. Liu B. H., Li Z. P. Current status and progress of direct borohydride fuel cell technology development. J. Power Sources. 2009, vol. 187, pp. 291–297.
13. Ma J., Choudhury N. A., Sahai Y. A comprehensive review of direct borohydride fuel cells. Renewable and Sustainable Energy Reviews. 2010, vol.14, pp. 183–199.
14. Ponce de Leon C., Walsh F. C., Pletcher D., Browning D. J., Lakeman J. B. Direct borohydride fuel cells. J. Power Sources. 2006, vol. 155, pp. 172–181.
15. Merino-Jimenez I., Ponce de Leon C., Shab A. A., Walsh F. C. Developments in direct borohydride fuel cells and remaining challenges. J. Power Sources. 2012, vol. 219, pp. 339–357.
16. Dong H., Feng R., Ai X., Cao Y., Yang H., Cha Ch. Electrooxidation mechanisms and discharge characteristics of borohydride on different catalytic metal surfaces. J. Phys. Chem. B. 2005, vol. 109, pp. 10896–10901.
17. Concha B. M., Chatenet M., Coutanceau C., Hahn F. In situ infrared (FTIR) study of the borohydride oxidation reaction. Electrochem. Commun. 2009, vol. 11, pp. 223–226.
18. Lim F. H. B., Pasqualeti A. M., Concha M. B. M., Chatenet M., Ticianelli E. A. Borohydride electrooxidation on Au and Pt electrodes. Electrochimica Acta. 2012, vol. 84, pp. 202–212.
19. Concha B. M., Chatenet M. Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media. Part I: Bulk electrodes. Electrochimica Acta. 2009, vol. 54, pp. 6119–6129.
20. Concha B. M., Chatenet M., Maillard F., Ticianelli E. A., Lima F. H.B., Lima R. B. In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction. Phys. Chem. Chem. Phys. 2010, vol. 12, pp. 11507–11516.
21. Concha B. M., Chatenet M., Ticianelli E. A., Lima F. H. B. In Situ Infrared (FTIR) study of the mechanism of the borohydride oxidation reaction on smooth Pt electrode. J. Phys. Chem. C. 2011, vol. 115 (25), pp. 12439–12447.
22. Jamard R., Salomon J., Martinent-Beaumont A., Coutanceau C. Life time test in direct borohydride fuel cell system. J. Power Sources. 2009, vol. 193, pp. 779–787.
23. Martins J. I., Nunes M. C., Koch R., Martins L., Bazzaoui M. Electrochemical oxidation of borohydride on platinum electrodes: The influence of thiourea in direct fuel cells. Electrochimica Acta. 2007, vol. 52, pp. 6443–6449.
24. Atwan M. H., Macdonald C. L.B., Northwood D. O., Gyenge E. L. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance .J. Power Sources. 2006, vol. 158, pp. 36–44.
25. Liu B. H., Li Z. P., Suda S. Electrocatalysts for the anodic oxidation of borohydrides. Electrochimica Acta. 2004, vol. 49, pp. 3097–3105.
26. Wang K., Lu J., Zhuang L. A Current-Decomposition study of the borohydride oxidation reaction at Ni electrodes. J. Phys. Chem. C. 2007, vol. 111, pp. 7456–7462.
27. Feng R. X., Dong H., Cao Y. L., Ai X. P., Yang H. X. Agni-catalyzed anode for direct borohydride fuel cells. Intern. J. Hydrogen Energy. 2007, vol. 32, pp. 4544–4549.
28. Feng R. X., Dong H., Wang Y. D., Ai X. P., Cao Y. L., Yang H. X. A simple and high efficient direct borohydride fuel cell with MnO2-catalyzed cathode. Electrochem. Commun. 2005, vol. 7, pp. 449–452.
29. Hong J., Fang B., Wang Ch., Currie K. Intrinsic borohydride fuel cell/battery hybrid power sources. J. Power Sources. 2006, vol. 161, pp. 753–760.
30. Ozerova A. M., Simagina V. I., Komova O. V., Netskina O. V., Odegova G. V., Bulavchenko O. A., Rudina N. A. Cobalt borate catalysts for hydrogen production via hydrolysis of sodium borohydride. J. Alloys and Compounds. 2012, vol. 513, pp. 266– 272.
31. Nakanishi K. Infrared absorption spectroscopy. Practical. San Francisco, Holden-Day Inc., 1962.
32. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Hoboken, New Jersey, A John Wiley & Sons, 1988.
33. Kazitsyna L. A., Kupletskaya N. B. Primenenie UF-, IK-, YaMR- i mass-spektrosokopii v organicheskoy himii. [Application of UV-, IR-, NMR- and mass-spectroscopy in organic chemistry]. Moscow. Moscow University Publ., 1979 (in Russian).
34. Chou Ch.-Ch., Lee D.-J., Chen B.-H. Hydrogen production from hydrolysis of ammonia borane with limited water supply. Intern. J. Hydrogen Energy. 2012, vol. 37, pp. 15681–15690.
35. Mitchell J., Smith D. M. Aquametry. A Treatise on Methods for the Determination of Water. Pt. 1, 2nd ed. New York, Wiley, 1977.
36. Eisenberg D., Kauzmann W. The Structure and Properties of Water. Oxford, Clarendon Press, 1973.
37. Mal'tseva N. N., Hain V. S. Borogidrid natriya. Svoystva i primenenie. [Borohydride sodium. Properties and application]. Moscow. Publ. Nauka, 1985 (in Russian).
38. Concha M. B. M., Chateneta M., Limab F. H.B., Ticianelli E. A. In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes. Electrochimica Acta. 2013, vol. 89, pp. 607– 615.
39. D'Ulivo1 A., Dedina J., Mester Z., Sturgeon R. E., Wang Q., Welz B. Mechanisms of chemical generation of volatile hydrides for trace element determination. Pure Appl. Chem. 2011, vol. 83, pp. 1283–1340.
40. Smith J., Seshadri K. S., White D. Infrared spectra of matrix isolated BH3-NH3, BD3-ND3, and BH3-ND3. J. Molecular Spectroscopy. 1973, vol. 45, pp. 327–337.
41. Santos D. M. F., Sequeira C. A. C. Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochimica Acta. 2010, vol. 55, pp. 6775–6781.
42. Krishnan P., Yang T-H., Advani S. G., Prasad A. K. Rotating ring-disc electrode (RRDE) investigation of borohydride electro-oxidation. J. Power Sources. 2008, vol. 182, pp. 106–111.
43. Chatenet M., Molina-Concha M. B., Diard J.-P. First insights into the borohydride oxidation reaction mechanism on gold by electrochemical impedance spectroscopy. Electrochimica Acta. 2009, vol. 54, pp. 1687–1693.
44. Churikov A. V., Ivanishchev A. V., Gamayunova I. M., Ushakov A. V., Churikov M. A. Metodika rascheta plotnosti, vyazkosti i elektroprovodnosti rastvorov Na(K)BH4–Na(K)BO2–Na(K)OH–H2O, ispol'zuemyh v vodorodnoy energetike [The method of calculation of density, viscosity and conductivity of solutions of Na(K)BH4–Na(K)BO2–Na(K)OH–H2O used in hydrogen energy]. Elektrokhimicheskaya Energetika [Electrochemical energetics]. 2010, vol. 10, no. 3, pp. 109–115 (in Russian).
45. Chatenet M., Molina-Concha M. B., El-Kissi N., Parrour G., Diard J.-P. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochimica Acta. 2009, vol. 54, pp. 4426–4435.
46. Colominas S., McLafferty J., Macdonald D. D. Electrochemical studies of sodium borohydride in alkaline aqueous solutions using a gold electrode. Electrochimica Acta. 2009, vol. 54, pp. 3575–3579.

Heading: 
Full Text (PDF):
(downloads: 64)