Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

твердополимерный электролит

Pressure influence on water electrolysis process with depolarization anode by sulfurous anhydride

Depolarization of anode by sulfurous anhydride allows to reduce power inputs on hydrogen production in 1.5 times. The reason which prevents commercialization of this process is realization impossibility of industrial electrolysis current density because of SO2 feeding diffusion limitation to anodic catalytic layer. Pressure influence on water electrolysis process with depolarization anode by sulfurous anhydride in solid polymer electrolyte electrolyzers is examined. The paper shown pressure increase in anodic area allows to raise current density because of concentration increasing of dissolve sulfurous anhydride in the electrolysis installation.

Proton-exchange membrane fuel cell: structure of catalytic layer

Composition and structure of proton-exchange membrane fuel cell catalytic layers were investigated. Modelling of catalytic layer vas considered. This model allows to calculate layers containing particles of polymer and the catalyst of various forms and sizes. Dependence of conductivity and active layer surface area on concentration of polymer particles is shown. Best performance of a fuel cell is observed at the polymer concentration in a layer of 30–35% vol.

Research and investigation of catalytic layers of proton-exchange membrane fuel cell

Composition and structure of proton-exchange membrane (PEM) fuel cell catalytic layers were investigated. The maximum FC efficiency was observed at the polymer content in a layer 25-30 vol.% at work on air and 30-35 vol. % at work on oxygen. At a variation of quantity of catalytic composition the maximum current density have been received at layer load 1.75 mg/sm2, thus decrease in it value in 2 times leads to falling of current density only on 10%.