Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

solid polymer electrolyte

Effect of the catalyst layers structure on the pem fuel cell perfomance

Using complex models, including the solution percolation problem and electrochemical kinetics calculations are considered the features of a solid polymer fuel cell catalyst layers with a catalyst based on nanoscale carbon materials, including graphene nanowires. These calculations are consistent with the experimental data presented by optimizing the composition of the catalyst layers. It is shown that the addition of 20 wt.\% nanofibres graphene can reduce ohmic losses from the ion current and improve the performance of the fuel cell is 20%

Research of degradation mechanism of the membrane-electrode assemlies of solid polymer water electrolyzer

Concerning performance, safety, reliability and durability issues, the membrane-electrode assembly (MEA) is probably the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this article is to report on specific degradation mechanisms of the MEA and electrolyser in whole.

Investigation of the high-temperature proton-exchange membrane fuel cell and calculation of the efficiency of the electrochemical power installations on its basis

A high-temperature solid polymer electrolyte fuel cell using H 3 PO 4 -doped polybenzimidazole (PBI) as proton-exchange membrane has been developed and tested. The influences of temperature (in a range between 130 and 170°C), pressure (in a range between 1 and 3 bars) and air flow rate onto fuel cell performances have been studied. A maximum output power density of 200 mW·cm-2 has been obtained. The existence of an optimum air flow rate (expressed in oxygen stoichiometric ratio) has been put into evidence. It allows an increase of the fuel cell voltage from 250 mV up to ca. 400 mV at 0.4 A·cm-2. The results of the calculation of efficiency of PBI-based electrochemical power plant using the products of natural gas conversion as a fuel are presented.