Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

The chemical current sources with a magnesium anode: Electrode materials and their properties

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The article is devoted to the study of the possibility of creating chemical current sources with a magnesium anode. The work presents the continuation of the analysis of conventional current sources with high specific characteristics. The article describes the types of cathode-active substances that have potential possibility in making chemical current sources with a magnesium anode or an anode based on magnesium intermetallic compounds.

A detailed analysis of publications on the use of the selected systems for making competitive chemical current sources is given, discharge and discharge-charge curves are presented and the specific characteristics of the studied systems are calculated. The necessary conclusions on the application of selected electrochemical systems with a magnesium anode have been made.

Literature

1. Rodionov V. V., Nichvolodin A. G., Kazarinov I. A. Electrolytes for rechargeable chemical current sources with magnesium anode. Electrochemical Energetics, 2022, vol. 22, no. 1, pp. 3–20 (in Russian).

https://doi.org/10.18500/1608-4039-2022-22-1-3-20

2. Saha P., Datta M. K., Velikokhatnyi O. I., Manivannan A., Alman D., Kumta P. N. Rechargeable magnesium battery: Current status and key challenges for the future. Progress in Materials Science, 2014, vol. 66, pp. 1–86. https://doi.org/10.1016/j.pmatsci.2014.04.001

3. Bucur C. B. Challenges of a Rechargeable Magnesium Battery. A Guide to the Viability of this Post Lithium-Ion Battery. Springer, Switzerland, 2018. 67 p. https://doi.org/10.1007/978-3-319-65067-8

4. Periyapperuma K., Tran T. T., Purcell M. I., Obovac M. N. The Reversible Magnesiation of Pb. Electrochimica Acta, 2015, vol. 165, pp. 162–165. https://dx.doi.org/10.1016/j.electacta.2015.03.006

5. Murgia F., Weldekidan E. T., Stievano L., Monconduit L., Berthelot R. First investigation of indium-based electrode in Mg-battery. Electrochemistry Communications, 2015, vol. 60, pp. 56–59. https://dx.doi.org/10.1016/j.elecom.2015.08.007

6. Aurbach D., Gofer Y., Schechter A., Zhogua L., Gizbar H. Perezaryazhaemye galvanicheskieel elementy s vysokoi plotnostyu energii i nevodnye electrolity [Rechargeable high energy density electrochemical cells and non-aqueous electrolytes]; Bar-Ilan University, assignee. Russian Federation patent RF no. 2277272, 2006 May 27 (in Russian).

7. Muldoon J., Bucur C. B., Gregory T. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists – Electrolytes and Cathodes Needed. Angew. Chem. Int. Ed., 2017, vol. 6, pp. 12064–12084. https://doi.org/10.1002/anie.201700673

8. Muldoon J., Bucur C. B., Gregory T. Quest for non-aqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev., 2014, vol. 114. pp. 11683–11720. https://doi.org/10.1021/cr500049y

9. Aurbach D., Lu Z., Schechter A., Gofer Y., Gizbar H., Turgeman R., Cohen Y., Moshkovich M., Levi E. Prototype systems for rechargeable magnesium batteries. Nature, 2000, vol. 407, pp. 724–727. https://doi.org/10.1038/35037553

10. Mohtadi R., Mizuno F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol., 2014, vol. 5, pp. 1291–1311. https://doi.org/10.3762/bjnano.5.143

11. Morachevskii A. G., Popovich А. А. Magnesium-ion batteries – a new direction of research. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 2019, vol. 25, no. 3, pp. 133–139 (in Russian). https://doi.org/10.18721/JEST.25312

12. Gregory T. D., Hoffman R. J., Winterton R. C. Non-aqueous Electrochemistry of Magnesium: Applications to Energy Storage. J. Electrochem. Soc., 1990, vol. 137, no. 3, pp. 775–780. https://doi.org/10.1149/1.2086553

13. Liang Y., Feng R., Yang S., Ma H., Liang J., Chen J. Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode. Adv. Mater., 2011, vol. 23, iss. 5, pp. 640–643. https://doi.org/10.1002/adma.201003560

14. Li X.-L., Li Y.-D. MoS2 Nanostructures : Synthesis and Electrochemical Mg2+ Intercalation. J. Phys. Chem. B, 2004, 108, no. 37, pp. 13893–13900. https://doi.org/10.1021/jp0367575

15. Sun X., Bonnick P., Duffort V., Liu M., Rong Z., Persson K. A., Ceder G., Nazar L. F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci., 2016, vol. 9, pp. 2273. https://doi.org/10.1039/C6EE00724D

16. Amir N., Vestfrid Y., Chusid O., Gofer Y., Aurbach D. Progress in non-aqueous magnesium electrochemistry // J. Power Sources, 2007, vol. 174, iss. 2, pp. 1234–1240. https://doi.org/10.1016/j.jpowsour.2007.06.206

17. Pan B., Huang J., Feng Zh., Zeng L., He M., Zhang L., Vaughey J. T., Bedzyk M. J., Fenter P., Zhang Z., Burrell A. K., Liao C. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries. Adv. Energy Mater., 2016, vol. 6, iss. 14, pp. 1600140. https://doi.org/10.1002/aenm.201600140

18. Pan B., Zhou D., Huang J., Zhang L., Burrell A. K., Vaughey J. T., Zhang Zh., Liao Ch. 2,5-Dimethoxy-1,4-Benzoquinone (DMBQ) as Organic Cathode for Rechargeable Magnesium-Ion Batteries. J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. A580–A583. https://doi.org/10.1149/2.0021605jes

19. Zhang Zh., Cui Z., Qiao L., Guan J., Xu H., Wang X., Hu P., Du H., Li S., Zhou X., Dong S., Liu Zh., Cui G., Chen L. Novel desing concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater., 2017, № 1602055, pp. 1–10. https://doi.org/10.1002/aenm.201602055

20. Xiahui Yao, Jingru Luo, Qi Dong, Dunwei Wang. A rechargeable Non-aqueous Mg-Br2 battery. Nano Energy, 2016, vol. 28, pp. 440–446. https://dx.doi.org/10.1016/j.nanoen.2016.09.003

21. Tian H., Gao T., Li X., Wang X., Luo Ch., Fan X., Yang Ch., Suo L., Ma Zh., Han W., Wang Ch. High power rechargeable magnesium/iodine battery chemistry. Nature Communication, 2017, vol. 8, article no. 14083. https://doi.org/10.1038/ncomms1483

22. Bulut S., Klose P., Huang M.-M., Weingärtner H., Dyson P. J., Laurenczy G., Friedrich Ch., Menz J., Kümmerer K., Krossing I. Synthesis of room-temperature ionic liquids with the weakly coordinating [Al(ORF)4] anion [RF=C(H)(CF3)2] and the determination of their principal physical properties. Chem. Eur. J., 2010, vol. 16, pp. 13139–13154. https://doi.org/10.1002/chem.201000982

Full Text (PDF):
(downloads: 58)