Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Reduced Graphene Oxide Spheres as Active Materials for Lithium Ion Rechargeable Battery Anode

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

DOI: https://doi.org/10.18500/1608-4039-2018-18-3-133-140

This article show results of research work which focused on a new active materials for lithium ion rechargeable battery anode – reduced graphene oxide spheres, which made by blending of two liquids – hot vacuum oil in graphene oxide water dispersion, with subsequent reduction formed graphene oxide spheres in heated to 200°C vacuum oil. Investigated surface morphology, chemical bond structure and cyclic voltammetry of reduced graphene oxide spheres. Graphene oxide spheres show capacity 185 mA⋅h/g throughout 50 charge/discharge cycles.

Literature

1. Ferrari A., Bonaccorso F., Fal’ko V., Novoselov K., Roche S., Boggild P., Borini S., Koppens F., Palermo V., Pugno N., Garrido J., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhänen T., Morpurgo A., Coleman J., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G., Guinea F., Dekker C., Barbone M., Sun Z., Galiotis C., Grigorenko A., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G., Hong B., Ahn J., Kim J., Zirath H., Wees B., Zant H., Occhipinti L., Matteo A., Kinloch I., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S., Tannock Q., Lofwander T., Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2014, vol. 7, pp. 4598–4810.

2. Shalyapina A. Ya., Solov’eva A. Yu., Zaporozhets M. A., Khokhlov E. M., Plotnichenko V. G., Savilov S. V., Egorov A. V., Nikolaichik V. I., Buslaeva E. Yu., Rustamova E. G., Avilov A. S., Gubin S. P. Zinc oxide nanoparticles immobilized on graphene flake. Russ. J. Inorganic Chemistry, 2013, vol. 58. no. 3, pp. 406–412.

3. Gubin S. P., Tkachev S. V. Grafen i rodstvennye nanoformy ugleroda. Izd. 4, dop. [Graphene and Related Nanoforms of Carbon. Ed. 4, add.]. Moscow, LENAND Publ., 2015. 112 p.

4. Tkachev S. V., Buslaeva E. Yu., Naumkin A. V., Kotova S. L., Laure I. V., Gubin S. P. Reduced graphene oxide. Inorganic Materials, 2012, vol. 48, no. 8, pp. 796–802.

5. Rychagov A. Yu., Gubin S. P., Chuprov P. N., Kornilov D. Yu., Karaseva A. S., Krasnova E. S., Voronov V. A., Tkachev S. V. Electrochemical Reduction and Electric Conductivity of Graphene Oxide Films. Russ. J. Electrochemistry, 2017, vol. 53, no. 7, pp. 721–727.

6. Kornilov D. Yu., Gubin S. P., Chuprov P. N., Rychagov A. Yu., Cheglakov A. V., Karaseva A. S., Krasnova E. S., Voronov V. A., Tkachev S. V., Kasharina L. A. Reduced Graphene Oxide as a Protective Layer of the Current Collector of a Lithium-Ion Battery. Russ. J. Electrochemistry, 2017, vol. 53, no. 6, pp. 622–626.

7. Gubin S. P., Rychagov A. Yu., Chuprov P. N., Tkachev S. V., Kornilov D. Yu., Almazova A. S., Krasnova E. S., Voronov V. A. Supercapacitor based on electrochemically reduced graphene oxide. Electrochemical Energetics, 2015, vol. 15, no. 2, pp. 57–63 (in Russian).

8. Ferrari A. C., Basko D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 2013, no. 8, pp. 235–246.

9. Yaroslavtsev A. B., Kulova T. L., Skundin A. M. Electrode nanomaterials for lithium-ion batteries. Russ. Chem. Rev., 2015, vol. 84. no. 8, pp. 826–852.

10. Liu T., Luo R., Yoon S., Mochida I. Effect of vacuum carbonization treatment on the irreversible capacity of hard carbon prepared from biomass material. Mater. Lett., 2010, vol. 64, рр. 74–76.

Full Text (PDF):
(downloads: 630)