Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Peculiarities of the kinetic laws of cathode synthesis of the Cu–Pb–Bi–Ca system designed for using as an anode of a metal-ion battery

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

УДК 541.135

DOI: https://doi.org/10.18500/1608-4039-2016-16-2-47-61

Matrix electrodes based on copper and lead were obtained by cathode intercalation: CuBi, PbBi, CuPbBi, CuCa, PbCa, CuBiCa, PbBiCa, CuPbBiCa, their composition being identified by means of X-ray diffraction analysis and open-circuit potential measurement. The laser emission micro-spectral analysis determines the depth of penetration (% of mass) of cations of bismuth, lead and calcium into the structure of the electrodes under study.

The influence of the potential value, the concentration of electrolyte on the kinetics and phase formation during the electrochemical intercalation of calcium into copper, lead and cathode synthesized alloys on their basis has been established. An increase in the rate of the formation of solid solutions of α-CaCu, α-CaPb in the series of DMF ≫ PC> DMSO solvents due to the structural and physicochemical properties of the solvents, the difference in the interaction with the solution components and electrode materials was observed.

An experimental proving of the dependence of the activating effect of the third component (alloying metals Pb, Bi) on its nature is proposed, which makes itself evident in increasing the kinetic characteristics, increasing the efficiency and duration of cycling, and also the amount of capacity delivered by the electrodes. It has been found that the observed effect is due to the influence of the size of the atoms of the alloying metals and the type of epy possible defects on the properties and structure of the initial copper and lead matrix and, thereby, on the kinetics and mechanism of calcium intercalation into the alloys under study.

Literature

1. Bolotovskiy V. I., Vaysgant Z. I. Ekspluatatciya, obsluzhivaniye i remont svintsovykh akkumulyatorov [Operation, maintenance and repairing of lead batteries]. Leningrad, Energoatomizdat, Leningradskoye otdeleniye, 1988. 208 p. (in Russian).

2. Kabanov B. N., Astakhov I. I., Kiseleva I. G. Vnedreniye – novoye napravleniye v izuchenii kinetiki elektrokhimicheskogo vydeleniya i rastvoreniya metallov [Introduction – a new direction in the study of kinetics of electrochemical separation and dissolution of metals]. In: Kinetika slozhnykh elektrokhimicheskikh reaktsiy. [Kinetics of complex electrochemical reactions], Moscow, Nauka Publ., 1981, pp. 200–239 (in Russian).

3. Ol’shanskaya L. N. Polozhitel’nyye elektrody dlya litiyevykh akkumulyatorov: problemy, napravleniya vybora [Positive electrodes for lithium batteries: problems, directions of choice]. Elektrohimicheskaja Energetika [Electrochemical energetics], 2002, vol. 2, no. 2, pp. 66–78 (in Russian).

4 Lysenko O. G., Popova S. S., Shcherbinina O. N. Elektrokhimicheskoye povedeniye svintsa, modifitsirovannogo lantanom, v aprotonnykh organicheskikh rastvorakh khlorida kal’tsiya [Electrochemical behavior of lead modified with lanthanum in aprotic organic solutions of calcium chloride]. Korroziya: materialy, zashchita [Corrosion: materials, protection], 2010, no. 5, pp. 41–43 (in Russian).

5. Ozeryanskaya V. V. Guterman V. Ye., Grigor’yev V. P. Issledovaniya fazovykh prevrashcheniy litiya pri interkalyatsii i deinterkalyatsii yego na elektrodakh iz intermetallicheskikh soyedineniy alyuminiya [Studies of phase transformations of lithium during its intercalation and deintercalation on electrodes of intermetallic aluminum compounds]. Elektrokhimiya [Electrochemistry], 1999, vol. 35, no. 2, pp. 275–277 (in Russian).

6. Shluger M. A., Tok L. D. Gal’vanicheskiye pokrytiya v mashinostroyenii. Spravochnik: v 2 t. Pod red. M. A. Shlugera, L. D. Toka. [Galvanic coatings in mechanical engineering: in 2 vols. Ed. by M. A. Shluger, L. D. Tok.]. Moscow, Mashinostroyeniye Publ., 1985, vol. 2, 248 p. (in Russian).

7. Fetter K. Elektrokhimicheskaya kinetika [Electrochemical kinetics]. Moscow, Khimiya Publ., 1967. 856 p. (in Russian).

8. Guterman V. Ye., Grigor’yev V. P., Averina Yu. V., Bazhenova N. A. Osobennosti elektrokhimicheskogo fazoobrazovaniya v alyuminiyevom elektrode v nevodnykh sredakh [Peculiarities of electrochemical phase formation in an aluminum electrode in non-aqueous media]. III soveshch. stran SNG po LIT: Tez. dokl. [III conference of CIS countries on LIT: Theses of the reports]. Yekaterinburg, URO RAN, 1994, pp. 36 (in Russian).

9. Solov’yeva N. D., Tseluykin V. N., Popova S. S. Vzaimosvyaz’ kinetiki elektrokristallizatsii osadkov splava zhelezo – nikel’ so strukturnymi prevrashcheniyami v rastvore [Interrelation of kinetics of electrocrystallization of precipitates of the iron-nickel alloy with structural transformations in solution]. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya [News of universities. Chemistry and chemical technology], 2000, vol. 43, no. 5, .

10. Spravochnik po elektrokhimii. Pod red. A. M. Sukhotina [A guide on electrochemistry. Ed. by A. M. Sukhotin]. Leningrad, Khimiya Publ., 1981. 488 p. (in Russian).

Full Text (PDF):
(downloads: 640)
Файл статьи: