Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrolytes for rechargable chemical current sources with magnesium anode

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The article provides a list of currently known electrolytes for creating rechargeable chemical current sources with a magnesium anode. Among them are electrolytes containing and not containing chlorides, as well as boron- and aluminum-centric electrolytes as liquid electrolytes. Examples of thickened, polymeric and solid electrolytes are given. Summary tables on the properties of solvents and liquid solutions of electrolytes are given. It has been shown that the greatest stability, cyclability and electrical conductivity, as well as the least corrosive activity, have electrolytes: a) closoboranes, Mg(CB11H12)2 with σ25 = 3.0 mS/cm and b) magnesium hexafluoropropylaluminate, Mg{[(CF3)2CHO]4Al}2 with σ25 = 6.5 mS/cm. The latter electrolyte is less toxic and environmentally friendly, easier to manufacture and cheaper.

The types of anodes and methods of their preparation are briefly discussed, both for liquid and thickened electrolytes.

Literature

1. Bucur C. B. Challenges of a Rechargeable Magnesium Battery. A Guide to the Viability of this Post Lithium-Ion Battery. Springer, 2018. 67 p. https://www.doi.org/10.1007/978-3-319-65067-8

2. Muldoon J., Bucur C. B., Gregory T. Quest for non-aqueous multivalent secondary batteries : Magnesium and beyond. Chem. Rev., 2014, vol. 114, pp. 11683–11720. https://www.doi.org/10.1021/cr500049y

3. Mel’nikov P. S. Handbook of Electroplating in Mechanical Engineering. Moscow, Mashinostroenie Publ., 1979. 296 p. (in Russian).

4. Liu T., Shao Y., Li G., Gu M., Hu J., Xu S., Nie Z., Chen X., Wang C., Liu J. A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A, 2014, vol. 2, pp. 3430–3438. https://www.doi.org/10.1039/C3TA14825D

5. Gregory T. G., Hoffman R. J., Winterton R. C. Nonaqueous electrochemistry of magnesium. Applications to energy storage. J. Electrochem. Soc., 1990, vol. 137, no. 3, pp. 775–780. https://www.doi.org/10.1149/1.2086553

6. Wan L. F., Perdue B. R., Apblett C. A., Prendergast D. Mg desolvation and intercalation mechanism at the Mo6S8Chevrel phase surface. Chem. Mater., 2015, vol. 27, pp. 5932–5940. https://www.doi.org/10.1021/acs.chemmater.5b01907

7. Doe R. E., Han R., Hwang J., Gmitter A., Shterenberg I., Yoo H., Pour N., Aurbach D. Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun., 2013, vol. 50, pp. 243–245. https://www.doi.org/10.1039/C3CC47866C

8. Nelson E. G., Brody S. I., Kampf J. W., Bartlett B. M. A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A, 2014, vol. 2, pp. 18194–18198. https://www.doi.org/10.1039/C4TA04625K

9. Pour N., Gofer Y., Major D. T., Aurbach D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by spectroscopic means and DFT calculations. Journal of the American Chemical Society, 2011, vol. 133, pp. 6270–6278. https://www.doi.org/10.1021/ja1098512

10. Carter T. J., Mohtadi R., Arthur T. S., Mizuno F., Zhang R., Shirai S., Kampf J. W. Boron clusters as highly stable magnesium – battery electrolytes. Angew. Chem. Int. Ed., 2014, vol. 53, pp. 3173–3177. https://www.doi.org/10.1002/anie.201310317

11. Morris J. H., Gysling H. J., Reed D. Electrochemistry of boron compounds. Chem. Rev., 1985, vol. 85, pp. 51–76.

12. Boeré R. T., Kacprzak S., Kessler M., Knapp C., Reibau R., Riedel S., Roemmele T. L., Rühle M., Scherer H., Weber S. Oxidation of closo-[B12Cl12]2− to the Radical Anion [B12Cl12]⋅− and to Neutral B12Cl12. Angew. Chem. Int. Ed., 2011, vol. 50, pp. 549–552. https://www.doi.org/10.1002/anie.201004755

13. Zakharkin L. I. Some recent advances in the chemistry of dicarbon-close-dodecarboranes. Pure and Applied Chemistry, 1972, vol. 29, pp. 513–526.

14. Clegg W., Brown D. A., Bryan S. J., Wade K. Preparation and crystal structure of the dicarboranylmagnesiumbis(dioxane) adduct Mg(2-Me-1,2-C2B10H10⋅2C4H8O2. J. Organomet. Chem., 1987, vol. 325, pp. 39–46.

15. Beall H. B. Boron clusters as highly stable magnesium-battery electrolytes. In: E. L. Muetterties, ed. Boron Hydride Chemistry. New York, Academic Press, 1975, pp. 316–317.

16. Tutusaus O., Mohtadi R., Arthur T. S., Mizuno F., Nelson E. G., Sevryugina Y. V. An efficient halogen–free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed., 2015, vol. 54, pp. 7900–7904. https://www.doi.org/10.1002/anie.20142202

17. Zhang Zh., Cui Z., Qiao L., Guan J., Xu H., Wang X., Hu P., Du H., Li S., Zhou X., Dong S., Liu Z., Cui G., Chen L. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater., 2017, vol. 7, no. 11, pp. 1–10. https://www.doi.org/10.1002/aenm.201602055

18. Herb J. T., Nist-Lund C. A., Arnold C. B. A fluorinated alkoxyaluminate electrolyte for magnesium-ion batteries. J. American Chemical Society. Energy Letters, 2016, vol. 1, no. 6, pp. 1227–1232. https://www.doi.org/10.1021/acsenergylett.6b00356

19. Saha P., Datta M. K., Velikokhatnyi O. I., Manivannan A., Alman D., Kumta P. N. Rechargeable magnesium battery : Current status and key challenges for the future. Progress in Materials Science, 2014, vol. 66, pp. 1–86. https://www.doi.org/10.1016/j.pmatsci.2014.04.001

20. Bucur C. B., Gregory T., Oliver A. G., Muldoon J. Confession of a magnesium battery. J. Phys. Chem. Letter, 2015, vol. 6, pp. 3578–3591. https://www.doi.org/10.1021/acs.jpclett.5b01219

21. Muldoon J., Bucur C. B., Gregory T. Fervent hype behind magnesium batteries : An open call to synthetic chemists – electrolytes and cathodes needed. Angew. Chem. Int. Ed., 2017, vol. 6, pp. 12064–12084. https://www.doi.org/10.1002/anie.201700673

22. Bulut S., Klose P., Huang M.-M., Weingarther H., Dyson P. J., Laurenczy G., Friedrich C., Menz J., Kummerer K., Krossing I. Synthesis of room-temperature ionic liquids with the weakly coordinating [Al(ORF)4] anion [RF = C(H)(CF3)2] and the determination of their principal physical properties. Chem. Eur. J., 2010, vol. 16, pp. 13139–13154. https://www.doi.org/10.1002/chem.201000982

23. Yoshimoto N., Matsumoto M., Egashia M., Morita M. Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode. J. Power Sources, 2010, vol. 195, pp. 2096–2098. https://www.doi.org/10.1016/j.jpowsour.2009.10.073

24. Pandey G. P., Hashmi S. A. Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J. Power Sources, 2009, vol. 187, pp. 627–634. https://www.doi.org/10.1016/j.jpowsour.2008.10.112

25. Yoshimoto N., Tomonaga Y., Ishikawa M., Morita M. Ionic conductance of polymeric electrolytes consisting of magnesium salts dissolved in cross-linked polymer matrix with linear polyether. Electrochim. Acta, 2001, vol. 46, pp. 1195–1200. https://www.doi.org/10.1016/S0013-4686(00)00705-2

26. Yoshimoto N., Yakushiji S., Ishikawa M., Morita M. Ionic conductance behaviour of polymeric electrolytes containing magnesium salts and their application to rechargeable batteries. Solid State Ionics, 2002, vol. 152, pp. 259–266. https://www.doi.org/10.1016/S0167-2738(02)00308-9

27. Morita M., Shirai T., Yoshimoto N., Ishikawa M. Ionic conductance behaviour of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt. J. Power Sources, 2005, vol. 139, pp. 351–355. https://www.doi.org/10.1016/j.jpowsour.2004.07.028

28. Ramesh S., Lu S.-C. Structural, morphological, thermal, and conductivity studies of magnesium ion conducting P(VdF-HFP) – based solid polymer electrolytes with good prospects. J. Appl. Polym. Sci., 2010, vol. 117, pp. 2050–2058. https://www.doi.org/10.1002/app.32051

29. Kumar Y., Hashmi S. A., Pandey G. P. Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim. Acta, 2011, vol. 56, pp. 3864–3873. https://www.doi.org/10.1016/j.electacta.2011.02.035

30. Pandey G. P., Kumar Y., Hashmi S. A. Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors : A comporative study with lithium and magnesium systems. Solid State Ionics, 2011, vol. 190, pp. 93–98. https://www.doi.org/10.1016/J.SSI.2011.03.018

31. Aubrey M. L., Ameloot R., Wiers B. M., Long J. R. Metal-organic frameworks as solid magnesium electrolytes. Energy Environ. Sci., 2014, vol. 7, pp. 667–671. https://www.doi.org/10/1039/C3EE43143F

32. McDonald T. M., Lee W. R., Mason J. A., Wires B. M., Hong C. S., Long J. R. Capture of carbon dioxide from air and flue gas in the alkalamine appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc., 2012, vol. 134, pp. 7056–7065. https://www.doi.org/10.1021/ja300034j

33. Nikol’skii B. N., Grigorov O. N., Pozin M. E. Spravochnik khimika : v 6 t. [Chemist’s Handbook : in 6 vols.]. Leningrad : Chimiya, Leningradskoe otdelenie Publ., 1966, vol. 5. 976 p. (in Russian).

34. Deng H. X., Grunder S., Cordova K. E., Valente C., Furukawa H., Hmadeh M., Gándara F., Whalley A. C., Liu Z., Asahina S., Kazumori H., O’Keeffe M., Terasaki O., Stoddart J. F., Yaghi O. M. Large-pore appertures in a series of metal-organic frameworks. Science, 2012, vol. 336, pp. 1018–1023. https://www.doi.org/10.1126/science.1220131

35. Tao Z. L., Xu L. N., Gou X. L., Chen J., Yuan H. T. TiS2Nanotube as the cathode materials of Mg-ion batteries. Chem. Commun., 2004, vol. 18, pp. 2080–2081. https://www.doi.org/10.1039/b403855j

Full Text (PDF):
(downloads: 102)