Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrochemical properties of quinones, antraquinones and their derivatives – potential redox-systems for flow batteries

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Practical interest in redox flow batteries has arisen in recent decades as a result of intensive development in the field of alternative energy (such as solar and wind) and the control of peak loads in industrial electrical networks. It turned out that large-scale energy storage systems used to compensate fluctuations in the process of solar and wind generation of energy in the production of electric vehicles and power supply systems for large households, are more profitable when working on redox flow batteries. Firstly, they are easy to scale, and secondly, the energy stored in such batteries is cheaper.

In recent years, the interest of researchers in the redox behavior of simple and substituted quinones and anthraquinones used as potential components of electrochemical energy storage systems has grown significantly. The main advantages of organic redox systems are scalability, kinetic advantages over the used redox systems based on inorganic substances, reconstructability (a wide possibility of changing electrochemical and chemical properties by introducing various functional groups into organic molecules) and environmental safety.

Therefore, in this work, the electrochemical behavior of some promising organic systems based on quinone, anthraquinone and their analogs to be used as redox systems of flow batteries was studied using the method of cyclic voltammetry.

Literature

1. Obama B. The irreversible momentum of clean energy. Science, 2017, vol. 355, pp. 126–129. https://www.doi.org/10.1126/science.aam6284

2. Huskinson B., Rugolo J., Mondal S. K., Aziz M. J. A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metalcontent catalyst. Energy Environ, 2012, vol. 5, pp. 8690–8698. https://www.doi.org/10.1039/C2EE22274D

3. Godyaeva M. V., Kazarinov I. A., Voronkov D. E., Oliskevich V. V., Ostroumov I. G. Flow batteries based on organic redox-systems for large-scale electric energy storage. Electrochemical Energetics, 2021, vol. 21, no. 2, pp. 59–85 (in Russian). https://www.doi.org/1018500/1608-4039-2021-21-2-59-85

4. Huskinson B., Marshak M. P., Suh C., Er S., Gerhardt M. R., Galvin C. J., Chen X., Aspuru-Guzik A., Gordon R. G., Aziz M. J. A metal-free organic–inorganic aqueous flow battery. Nature, 2014, vol. 505, pp. 195–198. https://www.doi.org/10.1038/nature12909

5. Song Y., Buettner G. R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic Biol Med, 2010, vol. 49, no. 6, pp. 919–962. https://www.doi.org/10.1016/j.freeradbiomed.2010.05.009

6. Chen Q., Gerhardt M., Hartle L., Aziz M. J. A Quinone-bromide Flow Battery with 1 W/cm2 Power Density. Journal of the Electrochemical Society, 2016, vol. 163, no. 1, pp. 5010–5019. https://www.doi.org/10.1149/2.0021601jes

7. Lin K., Chen Q., Gerhardt M., Tong L., Kim S., Eisenach L., Valle A. Alkaline quinone flow battery. Science, 2015, vol. 349, no. 6255, pp. 1529–1532. https://www.doi.org/10.1126/science.aab3033

8. Yang Z., Tong L., Tabor D., Beh E., Goulet M., Aziz M., Gordon R. Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy. Science Advances News, 2017, vol. 8, no. 8, pp. 8–17. https://www.doi.org/10.1002/aenm.201702056

9. Kwabi D. G., Ji Y., Aziz M. J. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries : A Critical Review. Chemical Reviews, 2020, vol. 120, no. 14, pp. 6467–6489. https://www.doi.org/10.1021/acs.chemrev.9b00599

10. Yang B., Hoober-Burkhardt L. E., Wang F., Surya Prakash G. K., Narayanan S. R. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples. Journal of the Electrochemical Society, 2014, vol. 161, no. 9, pp. 1371–1380. https://www.doi.org/10.1149/2.1001409jes

11. Aspuru-Guzik A., Er S., Suh C., Marshak M., Aspuru-Guzik A. Computational design of molecules for an all-quinone redox flow. Chemical Science, 2015, vol. 6, pp. 885–893. https://www.doi.org/10.1039/C4SC03030C

12. Yang B., Hoober-Burkhardt L. E., Krishnamoorthy S., Murali A., Surya Prakash G. K., Narayanan S. R. High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes. Journal of the Electrochemical Society, 2016, vol. 163, no. 7, pp. 1442–1449. https://www.doi.org/10.1149/2.1371607jes

13. Xu Y., Wen Y., Chenga J., Yanga Y., Xie Z., Cao G. Novel organic redox flow batteries using soluble quinonoid compounds as positive materials. Non-Grid-Connected Wind Power and Energy Conference, IEEE Publication, 2009, vol. 13, pp. 24–26. https://www.doi.org/10.1109/WNWEC.2009.5335870

14. Sharovarnikova L. A., Voronin V. G., Kapinosova L. P., Nazarchuk E. P. Sposob polucheniya 2,5-dioksibenzolsul’fonana kaliya [Method for Producing Potassium 2,5-dioxybenzenesulfonate]. Patent RF no. 1436456 С, 1994 (in Russian).

15. Borodovitsin V. V., Nikolaeva T. F., Shevchenko L. N., Kondratova G. B., Kolodyazhnyi V. I., Chumak V. T. Sposob pererabotki othodov kontaktnogo antrahinona [Method for Processing Waste Contact Anthraquinone]. Patent RF no. 2072353 С1, 1997 (in Russian).

Full Text (PDF):
(downloads: 87)