Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

деградация

Механизм деградации электродов из титаната натрия при циклировании

Методами гальваностатического циклирования и электрохимической импедансной спектроскопии изучены процессы деградации при циклировании электродов из титаната натрия Na2Ti3O7. Скорость деградации уменьшается от цикла к циклу по мере циклирования, а также при повышении тока циклирования. Сделан вывод, что основной причиной деградации является постепенное восстановление электролита с образованием нерастворимых продуктов (SEI).

Исследование механизмов деградации мембранно-электродных блоков твёрдополимерных электролизёров воды

С точки зрения производительности, безопасности, надёжности и долговечности мембранно-электродный блок (МЭБ) является наиболее критическим компонентом электролизной ячейки с твёрдым полимерным электролитом (ТПЭ). Большинство потерь производительности и большинство отказов в работе, происходящих в процессе работы электролизёра воды с ТПЭ, как правило, связано с МЭБ. Целью данной статьи является представление конкретных данных о механизмах деградации МЭБ и электролизёра в целом.

Простой метод диагностики причин деградации электродов при циклировании литий-ионных аккумуляторов

Показано, что анализ гальваностатических зарядно-разрядных кривых в нормированных координатах позволяет сделать предварительные выводы о механизме деградации электродов при циклировании. Если деградация обусловлена потерей активного вещества, все нормированные кривые совпадают. В случае, когда деградация связана с образованием изолирующих поверхностных плёнок, нормированные кривые смещаются по оси потенциалов. При структурных изменениях происходит качественное изменение формы гальваностатических кривых.

Особенности деградации кремниевых электродов при циклировании

На основании анализа литературных и собственных экспериментальных данных сформулирован закон деградации кремниевых электродов при их циклировании. Показано, что ёмкость электрода Q на n-м цикле может быть вычислена из соотношения Q = Q0 exp(kn+βn2/2), где Q0 — начальная ёмкость, k и β — эмпирические константы.

Исследование тонкоплёночных электродов системы кремний–алюминий–кислород для литий-ионного аккумулятора

Исследована структура и получены разрядные и зарядные характеристики тонкоплёночных электродов, полученных послойным магнетронным напылением кремния и алюминия в атмосфере с небольшими добавками кислорода. Показано, что такие электроды устойчиво циклируются с незначительной необратимой ёмкостью.