Механизм деградации электродов из титаната натрия при циклировании
Методами гальваностатического циклирования и электрохимической импедансной спектроскопии изучены процессы деградации при циклировании электродов из титаната натрия Na2Ti3O7. Скорость деградации уменьшается от цикла к циклу по мере циклирования, а также при повышении тока циклирования. Сделан вывод, что основной причиной деградации является постепенное восстановление электролита с образованием нерастворимых продуктов (SEI).
1. Скундин А. М., Кулова Т. Л., Ярославцев А. Б. Натрий-ионные аккумуляторы (Обзор) // Электрохимия. 2018. Т. 54. С. 131–174.
2. Senguttuvan P., Rousse G., Seznec V., Tarascon J.-M., Palacı́n M. R., Na2Ti3O7 : Lowest voltage ever reported oxide insertion electrode for sodium ion batteries // Chem. Mater. 2011. Vol. 23. P. 4109–4111.
3. Zhao L., Qi L., Wang H. Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes // J. Power Sources. 2013. Vol. 242. P. 597–603.
4. Rudola A., Saravanan K., Masona C. W., Balaya P. Na2Ti3O7 : an intercalation based anode for sodium-ion battery applications // J. Mater. Chem. A. 2013. Vol. 1. P. 2653–2662.
5. Pan H., Lu X., Yu X., Hu Y.-S., Li H., Yang X.-Q., Chen L. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries // Adv. Energy Mater. 2013. Vol. 3. P. 1186–1194.
6. Wang W., Yu C., Liu Y., Hou J., Zhu H., Jiao S. Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries // RSC Adv. 2013. Vol. 3. P. 1041–1044.
7. Zou W., Li J., Deng Q., Xue J., Dai X., Zhou A., Li J. Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodium-ion battery // Solid State Ionics. 2014. Vol. 262. P. 192–196.
8. Xu J., Ma C., Balasubramanian M., Meng Y. S. Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery // Chem. Commun. 2014. Vol. 50. P. 12564–12567.
9. Zhang Y., Guo L., Yang S. Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodium-ion battery // Chem. Commun. 2014. Vol. 50. P. 14029–14032.
10. Rudola A., Sharma N., Balaya P. Introducing a 0.2 V sodium-ion battery anode : The Na2Ti3O7 to Na3 − xTi3O7 pathway // Electrochem. Commun. 2015. Vol. 61. P. 10–13.
11. Xie M., Wang K., Chen R., Li Li, Wu F. A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties // Chem. Res. in Chinese Univs. 2015. Vol. 31. P. 443–446.
12. Wang X., Li Y., Gao Y., Wang Z., Chen L. Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries // Nano Energy. 2015. Vol. 13. P. 687–692.
13. Nava-Avendaño J., Morales-Garcı́a A., Ponrouch A., Rousse G., Frontera C., Senguttuvan P., Tarascon J.-M., Arroyo-de Dompablo M. E., Palacı́n M. R. Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7 // J. Mater. Chem. A. 2015. Vol. 3, № 44. P. 22280–22286.
14. Yan Z., Liu L., Shu H., Yang X., Wang H., Tan J., Zhou Q., Huang Z., Wang X. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries // J. Power Sources. 2015. Vol. 274. P. 8–14.
15. Zarrabeitia M., Castillo-Martı́neza E., Del Amo J. M. L., Eguı́a-Barrio A., Muñoz-Márquez M. Á., Rojo T., Casas-Cabanas M. Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7 // Acta Materialia. 2016. Vol. 104. P. 125–130.
16. Mukherjee S., Bates A., Schuppert N., Son B., Kim J. G., Choi J. S., Choi M. J., Lee D.-H., Kwon O., Jasinski J., Park S. A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes // J. Power Sources. 2015. Vol. 286. P. 276–289.
17. Muñoz-Márquez M. A., Zarrabeitia M., Castillo-Martı́nez E., Eguı́a-Barrio A., Rojo T., Casas-Cabanas M. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries : XPS and auger parameter analysis // ACS Applied Materials & Interfaces. 2015. Vol. 7. P. 7801–7808.
18. Liu J., Banis M. N., Xiao B., Sun Q., Lushington A., Li R., Guo J., Sham T.-K., Sun X. Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries // J. Mater. Chem. A. 2015. Vol. 3. P. 24281–24288.
19. Xu Y., Bauer D., Lübke M., Ashton T. E., Zong Y., Darr J. A. High-power sodium titanate anodes ; a comparison of lithium vs sodium-ion batteries // J. Power Sources. 2018. Vol. 408. P. 28–37.
20. Tran N.Q., Le T.A., Lee H. Ultralight and Flexible Sodium Titanate Nanowire Aerogel with Superior Sodium Storage // J. Mater. Chem. A. 2018. Vol. 6. P. 17495–17502.
21. Chen S., Pang Y., Liang J., Ding S. Red blood cell-like carbon hollow sphere anchored ultrathin Na2Ti3O7 nanosheets as long cyclic and high rate-performance anodes for sodium-ion batteries // J. Mater. Chem. A. 2018. Vol. 6. P. 13164–13170.
22. Kulova T., Skundin A., Chekannikov A., Novikova S., Stenina I., Kudryashova Yu., Sinenko G. Study of sodium-ion battery based on sodium vanadium phosphate and sodium titanate at low temperatures // Intern. J. Electrochem. Sci. 2019. Vol. 14. P. 1451–1460.
23. Ivanishchev A., Churikov A., Ivanishcheva I., Ushakov A. Lithium diffusion in Li3V2(PO4)3-based electrodes : a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data // Ionics. 2016. Vol. 22. P. 483–501.