Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Vanadium-Doped Bronze Titanium Dioxide as Anode Material for Lithium-ion Batteries with Enchanced Cycleability and Rate Performance

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Nanotubes of bronze titanium dioxide (TiO2(B)) doped with vanadium were synthesized through hydrothermal reaction. The obtained material possesses mesoporous structure and large specific surface area of 180 m2/g. It was found that the incorporation of vanadium into TiO2(B) lattice increases the volume of a unit cell. Additionally, the conductivity rose up to three orders of magnitude for doped titanium dioxide reaching the value of 1.70 ⋅ 10 − 8 S/cm. Having been used as anode material of lithium-ion batteries, the V-substituted TiO2(B) demonstrated enhanced cycling and rate performances. In particular, after 100 charge/discharge cycles at 9C, the electrode based on vanadium-doped titanium dioxide showed the capacity of 133 mA·h/g, the efficiency being more than 98.9%. Applying high current load of 18C, the V-modified TiO2(B) still maintained the reversible capacitance of about 114 mA·h/g that corresponded to 40% from the initial storage obtained at 0.45C-rate.

Literature

1. Li Y., Shen J., Li J., Liu S., Yu D., Xu R., Fu W.-F., Lv X.-J. Constructing a novel strategy for carbon-doped TiO2 multiple-phase nanocomposites toward superior electrochemical performance for lithium ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A, 2017, vol. 5, pp. 7055–7063. DOI: https://doi.org/10.1039/C7TA01184A

2. Chen C., Hu X., Zhang B., Miao L., Huang Y. Architectural design and phase engineering of N/B-codoped TiO2(B)/anatase nanotube assemblies for high-rate and long-life lithium storage. J. Mater. Chem. A, 2015, vol. 3, pp. 22591–22598. DOI: https://doi.org/10.1039/C5TA06884C

3. Fehse M., Ventosa E. Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem, 2015, vol. 80, pp. 785–795. DOI: https://doi.org/10.1002/cplu.201500038

4. Lewis C. S., Ru Li Y., Wang L., Li J., Stach E. A., Takeuchi K. J., Marschilok A. C., Takeuchi E. S., Wong S. S. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries. ACS Sustainable Chem. Eng., 2016, vol. 4, pp. 6299–6312. DOI: https://doi.org/10.1021/acssuschemeng.6b00763

5. Dylla A. G., Henkelman G., Stevenson K. J. Lithium insertion in nanostructured TiO2(B) architectures. Acc. Chem. Res., 2013, vol. 46, pp. 1104–1112. DOI: https://doi.org/10.1021/ar300176y

6. Yan W., Zou Y., Zhou H., Wang L., Meng X. Synergistic effect of sodium ions and fluoride ions on synthesis of pure-phase TiO2(B) nanorings. J. Nanopart. Res., 2017, vol. 19, article ID 192. DOI: https://doi.org/10.1007/s11051-017-3889-4

7. Dylla A. G., Xiao P., Henkelman G., Stevenson K. J. Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets. J. Phys. Chem. Lett., 2012, vol. 3, pp. 2015–2019. DOI: https://doi.org/10.1021/jz300766a

8. Zukalová M., Kalbáč M., Kavan L., Exnar I., Graetzel M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater., 2005, vol. 17, pp. 1248–1255. DOI: https://doi.org/10.1021/cm048249t

9. Cao M., Tao L., Lv X., Bu Y., Li M., Yin H., Zhu M., Zhong Z., Shen Y., Wang M. Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage. J. Power Sources, 2018, vol. 396, pp. 327–334. DOI: https://doi.org/10.1016/j.jpowsour.2018.06.012

10. Huang J. P., Yuan D. D., Zhang H. Z., Cao Y. L., Li G. R., Yang H. X., Gao X. P. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv., 2013, vol. 3, pp. 12593–12597. DOI: https://doi.org/10.1039/C3RA42413H

11. Ivanishchev A. V. Approaches to the creation of electrodes based on lithium intercalation compounds. Electrochemical Energetics, 2018, vol. 18, no. 2, pp. 51–76 (in Russian). DOI: https://doi.org/10.18500/1608-4039-2018-2-51-76

12. Meng Y., Wang D., Wei Y., Zhu K., Zhao Y., Bian X., Du F., Liu B., Gao Y., Chen G. Competition between insertion of Li+ and Mg2+ : An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. J. Power Sources, 2017, vol. 346, pp. 134–142. DOI: https://doi.org/10.1016/j.jpowsour.2017.02.033

13. Liu Y., Guo M., Liu Z., Wei Q., Wei M. Rapid and facile synthesis of hierarchically mesoporous TiO2B with enhanced reversible capacity and rate capability. J. Mater. Chem. A, 2018, vol. 6, pp. 1196–1200. DOI: https://doi.org/10.1039/C7TA09264D

14. Zhang Z., Zhou Z., Nie S., Wang H., Peng H., Li G., Chen K. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources, 2014, vol. 267, pp. 388–393. DOI: https://doi.org/10.1016/j.jpowsour.2014.05.121

15. Ventosa E., Mei B., Xia W., Muhler M., Schuhmann W. TiO2(B) / anatase composites synthesized by spray drying as high performance negative electrode material in Li-Ion batteries. ChemSusChem, 2013, vol. 6, pp. 1312–1315. DOI: https://doi.org/10.1002/cssС. 201300439

16. Grosjean R., Fehse M., Pigeot-Remy S., Stievano L., Monconduit L., Cassaignon S. Facile synthetic route towards nanostructured Fe–TiO2(B), used as negative electrode for Li-ion batteries. J. Power Sources, 2015, vol. 278, pp. 1–8. DOI: https://doi.org/10.1016/j.jpowsour.2014.12.032

17. Zhang Y., Meng Y., Zhu K., Qiu H., Ju Y., Gao Y., Du F., Zou B., Chen G., Wei Y. Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 7957–7965. DOI: https://doi.org/10.1021/acsami.5b10766

18. Amirsalehi M., Askari M. Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes. J. Mater. Sci. : Mater. Electron., 2018, vol. 29, article ID 13068. DOI: https://doi.org/10.1007/s10854-018-9429-x

19. Petricek V., Dusek M., Palatinus L. Crystallographic computing system JANA2006 : General features. Z. Kristallogr., 2014, vol. 229, pp. 345–352. DOI: https://doi.org/10.1515/zkri-2014-1737

20. Kuznetcov F. А., Voronkov M. G., Borisov V. O., Smirnova T. P. Fundamental bases of chemical vapour deposition processes of films and structures for nanoelectronics. Novosibirsk, Izdatel’stvo SO RAN, 2013. 177 p. (in Russian).

21. Safyanova L. V., Timaeva O. I., Kuz’micheva G. M., Lobanova N. A., Chumakov R. G., Khramov E. V., Terekhova R. P., Sadovskaya N. V. Stabilized titanium dioxide nanoparticles: production, physicochemical, photocatalytic and antimicrobial properties. Russ. Nanotechnol., 2019, vol. 14, no. 5–6, pp. 19–30. DOI: https://doi.org/10.21517/1992-7223-2019-5-6-19-3 (in Russian).

22. Shabalina A., Fakhrutdinova E., Chen Y.W., Lapin I. Preparation of gold-modified F,N-TiO2 visible light photocatalysts and their structural features comparative analysis. J. Sol-Gel Sci. Technol., 2015, vol. 75, pp. 617–624. DOI: https://doi.org/10.1007/s10971-015-3732-2

23. Xie J., Jiang D., Chen M., Li D., Zhu J., Lu X., Yan C. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surf., A, 2010, vol. 372, pp. 107–114. DOI: https://doi.org/10.1016/j.colsurfa.2010.09.037

24. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A., Ustinov A. Yu., Zheleznov V. V. Zr4+ / F co-doped TiO2(anatase) as high performance anode material for lithium-ion battery. Prog. Nat. Sci. : Mater. Int., 2018, vol. 28, pp. 542–547. DOI: https://doi.org/10.1016/j.pnsС. 2018.08.001

25. Lucassen F., Koch-Müller M., Taran M., Franz G. Coupled H and Nb, Cr, and V trace element behavior in synthetic rutile at 600°C, 400 MPa and possible geological application. Am. Mineral, 2013, vol. 98, pp. 7–18. DOI: https://doi.org/10.2138/am.2013.4183

26. Benjwal P., Kar K. K. Removal of methylene blue from wastewater under a low power irradiation source by Zn, Mn co-doped TiO2 photocatalysts. RSC Adv., 2015, vol. 5, pp. 98166–98176. DOI: https://doi.org/10.1039/C5RA19353B

27. Sekhar M. C., Reddy B. P., Vattikuti S. V. P., Shanmugam G., Ahn C.-H., Park S.-H. Structural, magnetic, and catalytic properties of Mn-doped titania nanoparticles synthesized by a sol–gel process. J. Clust. Sci., 2018, vol. 29, pp. 1255–1267. DOI: https://doi.org/10.1007/s10876-018-1437-8

28. Silversmit G., Depla D., Poelman H., Marin G. B., De Gryse R. Determination of the V 2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom., 2004, vol. 135, pp. 167–175. DOI: https://doi.org/10.1016/j.elspeС. 2004.03.004

29. Qiao H., Zhu X., Zheng Z., Liu L., Zhang L. Synthesis of V3O7⋅H2O nanobelts as cathode materials for lithium-ion batteries. Electrochem. Commun., 2006, vol. 8, pp. 21–26. DOI: https://doi.org/10.1016/j.elecom.2005.10.021

30. Li G., Pang S., Wang Z., Peng H., Zhang Z. Synthesis of H2V3O8 single-crystal nanobelts. Eur. J. Inorg. Chem., 2005, pp. 2060–2063. DOI: https://doi.org/10.1002/ejiС. 200400967

31. Lei Y., Li J., Wang Z., Sun J., Chen F., Liu H., Ma X., Liu Z. Atomic-scale investigation of new phase transformation process in TiO2 nanofibers. Nanoscale, 2017, vol. 9, pp. 4601–4609. DOI: https://doi.org/10.1039/C6NR08046D

32. Cai Y., Wang H.-E., Huang S.-Z., Jin J., Wang C., Yu Y., Li Y., Su B.-L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci. Rep., 2015, vol. 5, article ID 11557. DOI: https://doi.org/10.1038/srep11557

33. Qu J., Cloud J. E., Yang Y., Ding J., Yuan N. Synthesis of nanoparticles-deposited double-walled TiO2-B nanotubes with enhanced performance for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 22199–22208. DOI: https://doi.org/10.1021/am505893q

34. Hu H., Yu L., Gao X., Lin Z., Lou X. W. (D.) Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energy Environ. Sci., 2015, vol. 8, pp. 1480–1483. DOI: https://doi.org/10.1039/C5EE00101C

35. Kolen’ko Yu. V. Synthesis of titanium dioxide nanocrystalline materials using hydrothermal and supercritical solutions. Diss. Cand. Sci. (Chem.). Moscow, 2004. 161 p. (in Russian).

36. Li X., Li M., Liang J., Wang X., Yu K. Growth mechanism of hollow TiO2(B) nanocrystals as powerful application in lithium-ion batteries. J. Alloy. Compd., 2016, vol. 681, pp. 471–476. DOI: https://doi.org/10.1016/j.jallcom.2016.04.086

37. Beuvier T., Richard-Plouet M., Le Granvalet-Mancini M., Brousse T., Crosnier O., Brohan L. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Inorg. Chem., 2010, vol. 49, pp. 8457–8464. DOI: https://doi.org/10.1021/ic1010192

38. Madian M., Eychmüller A., Giebeler L. Current Advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries, 2018, vol. 4, article ID 7. DOI: https://doi.org/10.3390/batteries4010007

39. Zhang Y., Fu Q., Xu Q., Yan X., Zhang R., Guo Z., Du F., Wei Y., Zhang D., Chen G. Improved electrochemical performance of nitrogen doped TiO2B nanowires as anode materials for Li-ion batteries. Nanoscale, 2015, vol. 7, pp. 12215–12224. DOI: https://doi.org/10.1039/C5NR02457A

40. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Ustinov A. Yu., Podgorbunsky A. B., Sokolov A. A. Effect of isovalent doping by Zr4+ ions on the electrochemical behavior of TiO2(B). Russ. J. Inorg. Chem., 2019, vol. 64, no. 5, pp. 680–687. DOI: https://doi.org/10.1134/S0044457X19050143

Full Text (PDF):
(downloads: 202)