Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Подходы к исследованию литиевого транспорта в интеркаляционных электродах на основе тонкопленочных структур и многофазных композитов

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).

УДК 541.136

DOI:  https://doi.org/10.18500/1608-4039-2016-16-3-100-121

Представлены подходы к теоретическому описанию электрохимически стимулированных процессов переноса в твёрдых интеркаляционных соединениях лития; приведены результаты экспериментальной проверки разработанных подходов, найдены значения параметров ионного транспорта в тонкоплёночных и композитных электродах на основе ряда известных и зарекомендовавших себя литий -аккумулирующих соединений: LixC6, LixSn, LixWO3, LixTiO2, LiFePO4, Li3V2(PO4)3. Показан стадийный механизм литиевого транспорта в интеркаляционном электроде, который включает стадии переноса в объёме литий -аккумулирующего материала и на поверхности электрод | электролит. Это выражается в особенностях электроаналитических откликов интеркаляционного электрода в условиях различных электрохимических методов. Предложен оригинальный способ построения термодинамической зависимости потенциал–концентрация интеркаляционного электрода с приложением метода кулонометрического титрования: он основан на прогнозировании изменения электродного потенциала во времени путём экстраполяции начального участка транзиента потенциала на бесконечное время в координатах Et−0.5. Обсуждаются причины расхождения (гистерезиса) зависимостей E(c), измеренных таким способом при ступенчатом изменении состава (потенциала электрода) в анодном и катодном направлениях. Обоснована необходимость введения корректирующего параметра z в уравнение Рэндлса–Шевчика для учёта отличия активности ионов лития в твёрдом теле от их концентрации с целью корректного определения коэффициента диффузии из данных циклической вольтамперометрии с линейной развёрткой потенциала. Предложен способ определения параметра z из наклона экспериментальной зависимости E(c) в координатах Нернста E – ln c. Рассмотрены различные решения диффузионной задачи для анализа данных импульсных хроноамперо – и хронопотенциометрических методов в варианте прерывистого титрования с учётом различной геометрической и фазовой конфигурации диффузионного пространства в интеркаляционном электроде. Проанализированы зависимости коэффициента диффузии лития D от потенциала интеркаляционного электрода. Обсуждается применимость различных моделей – электрических эквивалентных схем (ЭС) для анализа данных метода спектроскопии электродного импеданса в приложении к интеркаляционному электроду. Предложен способ построения ЭС на основе анализа формы импедансного спектра и в предположении механизма литиевого транспорта в интеркаляционном электроде. Проанализированы зависимости найденных параметров ЭС от электродного потенциала. Проведено сравнение найденных кинетических параметров литиевого транспорта по данным различных методов. Показано различие в значениях кинетических параметров в зависимости от величины концентрационных возмущений в электроде.

Литература

СПИСОК ЛИТЕРАТУРЫ

  1. Cantalini C., Sun H. T., Faccio M., Pelino M., Santucci S., Lozzi L., Passacantando M. NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation // Sensors and Actuators B : Chemical. 1996. Vol. 31. P. 81–87.
  2. Nanba T., Takahashi T., Takada J., Osaka A., Miura Y., Yasui I., Kishimoto A., Kudo T. Characterization of amorphous tungsten trioxide thin films prepared by rf magnetron sputtering method // J. Non -Crystalline Solids. 1994. Vol. 178. P. 233–237.
  3. Meulenkamp E. A. Mechanism of WO3 Electrodeposition from Peroxy-Tungstate Solution // J. Electrochem. Soc. 1997. Vol. 144. P. 1664–1671.
  4. Biaggio S. R., Rocha -Filho R. C., Vilche J. R., Varela F. E., Gassa L. M. A study of thin anodic WO3 films by electrochemical impedance spectroscopy // Electrochim. Acta. 1997. Vol. 42. P. 1751–1758.
  5. Davazoglou D., Donnadieu A. Optical oscillator strengths and quantum mechanics matrix elements of WO3 polycrystalline thin films // J. Non -Crystalline Solids. 1994. Vol. 169. P. 64–71.
  6. Levi M. D., Aurbach D. Impedance of a Single Intercalation Particle and of Non -Homogeneous, Multilayered Porous Composite Electrodes for Li -ion Batteries // J. Phys. Chem. B. 2004. Vol. 108. P. 11693–11703.
  7. Levi M. D., Aurbach D. Frumkin intercalation isotherm D a tool for the description of lithium insertion into host materials : a review // Electrochim. Acta. 1999. Vol. 45. P. 167–185.
  8. Levi M. D., Wang C., Aurbach D. Two parallel diffusion paths model for interpretation of PITT and EIS responses from non -uniform intercalation electrodes // J. Electroanal. Chem. 2004. Vol. 561. P. 1–11.
  9. Meyers J. P., Doyle M., Darling R. M., Newman J. The Impedance Response of a Porous Electrode Composed of Intercalation Particles // J. Electrochem. Soc. 2000. Vol. 147. P. 2930–2940.
  10. Pajkossy T. Impedance of rough capacitive electrodes // J. Electroanal. Chem. 1994. Vol. 364. P. 111–125.
  11. Dokko K., Mohamedi M., Fujita Y., Itoh T., Nishizawa M., Umeda M., Uchida I. Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods // J. Electrochem. Soc. 2001. Vol. 148. P. A422–A426.
  12. Ivanishchev A. V., Churikov A. V., Ivanishcheva I. A., Zapsis K. V., Gamayunova I. M. Impedance spectroscopy of lithium -carbon electrodes // Russ. J. Electrochem. 2008. Vol. 44. P. 510–524.
  13. Churikov A. V., Pridatko K. I., Ivanishchev A. V., Ivanishcheva I. A., Gamayunova I. M., Zapsis K. V., Sycheva V. O. Impedance Spectroscopy of Lithium -Tin Film Electrodes // Russ. J. Electrochem. 2008. Vol. 44. P. 550–557.
  14. Churikov A. V., Ivanishchev A. V., Ivanishcheva I. A., Zapsis K. V., Gamayunova I. M., Sycheva V. O. Kinetics of Electrochemical Lithium Intercalation into Thin Tungsten (VI) Oxide Layers // Russ. J. Electrochem. 2008. Vol. 44. P. 530–542.
  15. Churikov A. V., Zobenkova V. A., Pridatko K. I. Lithium Intercalation into Titanium Dioxide Films from a Propylene Carbonate Solution // Russ. J. Electrochem. 2004. Vol. 40. P. 74–80.
  16. Levi M. D., Wang C., Aurbach D., Chvoj Z. Effect of temperature on the kinetics and thermodynamics of electrochemical insertion of Li -ions into a graphite electrode // J. Electroanal. Chem. 2004. Vol. 562. P. 187–203.
  17. Aurbach D., Levi M. D., Levi E., Telier H., Markovsky B., Salitra G. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides // J. Electrochem. Soc. 1998. Vol. 145. P. 3024–3034.
  18. Levi M. D., Gamolsky K., Aurbach D., Heider U., Oesten R. Determination of the Li -ion chemical diffusion coefficient for the topotactic solid -state reactions occurring via a two -phase or single -phase solid solution pathway // J. Electroanal. Chem. 1999. Vol. 477. P. 32–40.
  19. Levi M. D., Lu Z., Gofer Y., Cohen Y., Cohen Y., Aurbach D., Vieil E., Serose J. Simultaneous in -situ conductivity and cyclic voltammetry characterization of Li -ion intercalation into thin V2O5 films // J. Electroanal. Chem. 1999. Vol. 479. P. 12–20.
  20. Levi M. D., Wang C., Gnanaraj J. S., Aurbach D. Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions // J. Power Sources. 2003. Vol. 119–121. P. 538–542.
  21. Levi M. D., Cohen Y. S., Gofer Y., Aurbach D. Electrochemical responses of active metal insertion electrodes and electronically conducting polymers : common features and new insights // Electrochim. Acta. 2004. Vol. 49. P. 3701–3710.
  22. Markevich E., Levi M. D., Aurbach D. New insight into studies of the cycling performance of Li -graphite electrodes : a combination of cyclic voltammetry, electrochemical impedance, and differential self -discharge measurements // J. Electrochem. Soc. 2005. Vol. 152. P. A778–A786.
  23. Churikov A. V., Ivanishchev A. V., Ushakov A. V., Romanova V. O. Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium -ion batteries // J. Solid State Electrochem. 2014. Vol. 18. P. 1425–1441.
  24. Wen C. J., Boukamp B. A., Huggins R. A., Weppner W. Thermodynamic and Mass Transport Properties of «LiAl» // J. Electrochem. Soc. 1979. Vol. 126. P. 2258–2266.
  25. Montella C. Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials. Part I. Influence of charge transfer kinetics and ohmic potential drop // J. Electroanal. Chem. 2002. Vol. 518. P. 61–83.
  26. Montella C. Discussion of three models used for the investigation of insertion/extraction processes by the potential step chronoam- perometry technique // Electrochim. Acta. 2005. Vol. 50. P. 3746–3763.
  27. Montella C. Apparent diffusion coefficient of intercalated species measured with PITT. A simple formulation // Electrochim. Acta. 2006. Vol. 51. P. 3102–3111.
  28. Montella C., Michel R., Diard J. P. Numerical inversion of Laplace transforms. A useful tool for evaluation of chemical diffusion coefficients in ion -insertion electrodes investigated by PITT // J. Electroanal. Chem. 2007. Vol. 608. P. 37–46.
  29. Montella C., Michel R. New approach of electrochemical systems dynamics in the time domain under small -signal conditions : III Discrimination between nine candidate models for analysis of PITT experimental data from LixCoO2 film electrodes // J. Electroanal. Chem. 2009. Vol. 628. P. 97–112.
  30. Montella C. Re -examination of the potential -step chronoamperometry method through numerical inversion of Laplace transforms. General formulation and numerical solution // J. Electroanal. Chem. 2009. Vol. 633. P. 35–44.
  31. Montella C. Re -examination of the potential step chronoamperometry method through numerical inversion of Laplace transforms. Application examples // J. Electroanal. Chem. 2009. Vol. 633. P. 45–56.
  32. Churikov A. V. Chronoammetric determination of the lithium transfer rate in carbon electrodes // Russ. J. Electrochem. 2002. Vol. 38. P. 103–108.
  33. Churikov A. V., Volgin M. A., Pridatko K. I., Ivanishchev A. V., Gridina N. A., L’vov A. L. Electrochemical intercalation of lithium into carbon : a relaxation study // Russ. J. Electrochem. 2003. Vol. 39. P. 531–541.
  34. Churikov A. V., Volgin M. A., Pridatko K. I. On the determination of kinetic characteristics of lithium intercalation into carbon // Electrochim. Acta. 2002. Vol. 47. P. 2857–2865.
  35. Churikov A. V., Ivanischev A. V. Application of pulse methods to the determination of the electrochemical characteristics of lithium intercalates // Electrochim. Acta. 2003. Vol. 48. P. 3677–3691.
  36. Churikov A. V., Ivanishchev A. V., Ivanishcheva I. A., Sycheva V. O., Khasanova N. R., Antipov E. V. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques // Electrochim. Acta. 2010. Vol. 55. P. 2939–2950.
  37. Ivanishchev A. V., Churikov A. V., Ushakov A. V. Lithium transport processes in electrodes on the basis of Li3V2(PO4)3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry // Electrochim. Acta. 2014. Vol. 122. P. 187–196.
  38. Levi M. D., Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes // J. Phys. Chem. B. 1997. Vol. 101. P. 4641–4647.
  39. Levi M. D., Lu Z., Aurbach D. Application of finite -diffusion models for the interpretation of chronoamperometric and electroc- hemical impedance responses of thin lithium insertion V2O5 electrodes // Solid State Ionics. 2001. Vol. 143. P. 309–318.
  40. Levi M. D., Lu Z., Aurbach D. Li -insertion into thin monolithic V2O5 films electrodes characterized by a variety of electroanalytical techniques // J. Power Sources. 2001. Vol. 97–98. P. 482–485.
  41. Levi M. D., Lancry E., Gizbar H., Gofer Y., Levi E., Aurbach D. Phase transitions and diffusion kinetics during Mg2+ – and Li+-ion insertions into the Mo6S8 chevrel phase compound studied by PITT // Electrochim. Acta. 2004. Vol. 49. P. 3201–3209.
  42. Markevich E., Levi M. D., Aurbach D. Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion -insertion electrodes // J. Electroanal. Chem. 2005. Vol. 580. P. 231–237.
  43. Levi M. D., Markevich E., Aurbach D. Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion -insertion electrodes // Electrochim. Acta. 2005. Vol. 51. P. 98–110.
  44. Levi M. D., Demadrille R., Pron A., Vorotyntsev M. A., Gofer Y., Aurbach D. Application of a novel refinement method for accurate determination of chemical diffusion coefficients in electroactive materials by potential step technique // J. Electrochem. Soc. 2005. Vol. 152. P. E61–E67.
  45. Levi M. D., Markevich E., Wang C., Aurbach D. Chronoamperometric measurements and modeling of nucleation and growth, and moving boundary stages during electrochemical lithiation of graphite electrode // J. Electroanal. Chem. 2007. Vol. 600. P. 13–22.
  46. Vorotyntsev M. A., Levi M. D., Aurbach D. Spatially Limited Diffusion Coupled with Ohmic Potential Drop and/or Slow Interfacial Exchange : A New Method to Determine the Diffusion Time Constant and External Resistance from Potential // J. Electroanal. Chem. 2004. Vol. 572. P. 299–307.
  47. Lee S.-B., Pyun S.-I. Mechanism of lithium transport through an MCMB heat treated at 800–1200 °C // Electrochim. Acta. 2002. Vol. 48. P. 419–430.
  48. Chang W.-Y., Pyun S.-I., Lee S.-B. Kinetics of lithium transport through a hard carbon electrode studied by analysis of current transients // J. Solid State Electrochem. 2003. Vol. 7. P. 368–373.
  49. Lee S.-B., Pyun S.-I. The kinetics of lithium transport through a composite electrode made of mesocarbon -microbeads heat -treated at 800 °C investigated by current transient analysis // J. Solid State Electrochem. 2003. Vol. 7. P. 374–379.
  50. Go J.-Y., Pyun S.-I. A study on lithium transport through fractal Li1−d CoO2 film electrode by analysis of current transient based upon fractal theory // Electrochim. Acta. 2004. Vol. 49. P. 2551–2562.
  51. Jung K.-N., Pyun S.-I., Lee J.-W. An investigation of lithium transport through vanadium pentoxide xerogel film electrode by analyses of current transient and ac -impedance spectra // Electrochim. Acta. 2004. Vol. 49. P. 4371–4378.
  52. Lee J.-W., Pyun S.-I. Anomalous behaviour of hydrogen extraction from hydride -forming metals and alloys under impermeable boundary conditions // Electrochim. Acta. 2005. Vol. 50. P. 1777–1805.
  53. Go J.-Y., Pyun S.-I., Cho S.-I. An experimental study on cell -impedance controlled lithium transport through Li1−d CoO2 film electrode with fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram // Electrochim. Acta. 2005. Vol. 50. P. 5435–5443.
  54. Lee J.-W., Pyun S.-I. A study on the potentiostatic current transient and linear sweep voltammogram simulated from fractal intercalation electrode : diffusion coupled with interfacial charge transfer // Electrochim. Acta. 2005. Vol. 50. P. 1947–1955.
  55. Go J.-Y., Pyun S.-I. Theoretical approach to cell -impedance -controlled lithium transportthrough Li1−d CoO2 film electrode with fractal surface : numerical analysis of generalised diffusion equation // Electrochim. Acta. 2005. Vol. 50 P. 3479–3487.
  56. Kim K.-H., Pyun S.-I., Jung K.-N. An investigation of cell -impedance -controlled lithium transport through LiCoO2/Li1−d Mn2O4 bilayer film electrode prepared by rf magnetron sputtering // Electrochim. Acta. 2006. Vol. 52. P. 152–160.
  57. Jung K.-N., Pyun S.-I. The cell -impedance -controlled lithium transport through LiMn2O4 film electrode with fractal surface by analyses of ac -impedance spectra,potentiostatic current transient and linear sweep voltammogram // Electrochim. Acta. 2006. Vol. 51. P. 4649–4658.
  58. Go J.-Y., Pyun S.-I. A review of anomalous diffusion phenomena at fractal interface for diffusion -controlled and non -diffusi- on -controlled transfer processes // J. Solid State Electrochem. 2007. Vol. 11. P. 323–334.
  59. Deiss E., Haringer D., Novak P., Haas O. Modeling of the charge–discharge dynamics of lithium manganese oxide electrodes for lithium -ion batteries // Electrochim. Acta. 2001. Vol. 46. P. 4185–4196.
  60. Cheng Y.-T., Verbrugge M. W. Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation // J. Power Sources. 2009. Vol. 190. P. 453–460.
  61. Li J., Yang F., Xiao X., Verbrugge M. W., Cheng Y.-T. Potentiostatic intermittent titration technique (PITT) for spherical particles with finite interfacial kinetics // Electrochim. Acta. 2012. Vol. 75. P. 56–61.
  62. Han W., Hibino M., Kudo T. Hysteresis on the electrochemical lithium insertion and extraction of hexagonal tungsten trioxide. Influence of residual ammonium // Solid State Ionics. 2000. Vol. 128. P. 25–32.
  63. Podolske Ta K., Newman J. Proton intercalation hysteresis in charging and discharging nickel hydroxide electrodes // J. Electrochem. Soc. 1999. Vol. 146. P. 2769–2779.
  64. Yin S.-C., Grondey H., Strobel P., Anne M., Nazar L. F. Electrochemical Property : Structure relationships in monoclinic Li3−yV2(PO4)3 // J. Amer. Chem. Soc. 2003. Vol. 125. P. 10402–10411.
  65. Yin S.-C., Grondey H., Strobel P., Huang H., Nazar L. F. Charge ordering in lithium vanadium phosphates : electrode materials for lithium -ion batteries // J. Amer. Chem. Soc. 2003. Vol. 125. P. 326–327.
  66. Carslaw H. S., Jaeger J. C. Conduction of heat in solids. Oxford : Clarendon Press, 1959. 517 p.
  67. Levi M. D., Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium // J. Phys. Chem. B. 1997. Vol. 101. P. 4630–4640.
  68. Umeda M., Dokko K., Fujita Y., Mohamedi M., Uchida I., Selman J. R. Electrochemical impedance study of Li -ion insertion into mesocarbon microbead single particle electrode : Part I. Graphitized carbon // Electrochim. Acta. 2001. Vol. 47. P. 885–890.
  69. Wang C., Appleby A.J., Little F. E. Electrochemical impedance study of initial lithium ion intercalation into graphite powders // Electrochim. Acta. 2001. Vol. 46. P. 1793–1813.
  70. Roh Y. B., Jeong K. M., Cho H. G., Kang H. Y., Lee Y. S., Ryu S. K., Lee B. S. Unique charge/discharge properties of carbon materials with different structures // J. Power Sources. 1997. Vol. 68. P. 271–276.
  71. Поваров Ю. М., Бекетаева Л. А., Воробьева И. В. Импеданс литиевого электрода в органических апротонных средах // Электрохимия. 1983. Т. 19. С. 586–593.
  72. Поваров Ю. М., Бекетаева Л. А., Пурешева Б. К. Импеданс литиевого электрода в окислительных средах // Электрохимия. 1982. Т. 18. С. 1340–1348.
  73. Поваров Ю. М., Воробьева И. В. Импеданс литиевого электрода в тионилхлоридных электролитах // Электрохимия. 1982. Т. 18. С. 1693–1696.
  74. Churikov A. V., Gamayunova I. M., Shirokov A. V. Ionic processes in solid -electrolyte passivating films on lithium // J. Solid State Electrochem. 2000. Vol. 4. P. 216–224.
  75. Churikov A. V., Nimon E. S., Lvov A. L. Impedance of Li -Sn, Li -Cd and Li -Sn -Cd alloys in propylene carbonate solution // Electrochim. Acta. 1997. Vol. 42. P. 179–189.
  76. Maier J. Defect chemistry and conductivity effects in heterogeneous solid electrolytes // J. Electrochem. Soc. 1987. Vol. 134. P. 1524–1535.
  77. Kliewer K. L., Koehler J. S. Space Charge in Ionic Crystals. I. General Approach with Application to NaCl // Phys. Rev. 1965. Vol. 140. P. A1226–A1240.
  78. Jamnik J., Gaberšček M., Meden A., Pejovnik S. Space-Charge at the Lithium-Lithium Chloride Interface // J. Electrochem. Soc. 1991. Vol. 138. P. 1582–1587.
  79. Dokko K., Fujita Y., Mohamedi M., Umeda M., Uchida I., Selman J. R. Electrochemical impedance study of Li -ion insertion into mesocarbon microbead single particle electrode : Part II. Disordered carbon // Electrochim. Acta. 2001. Vol. 47. P. 933–938.
  80. Yoon S., Kim H., Oh S.M. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries // J. Power Sources. 2001. Vol. 94. P. 68–73.
  81. Barsoukov E., Kim J.-H., Kim J.-H., Yoon C.-O., Lee H. Kinetics of lithium intercalation into carbon anodes : in situ impedance investigation of thickness and potential dependence // Solid State Ionics. 1999. Vol. 116. P. 249–261.
  82. Aurbach D., Markovsky B., Nimberger A., Levi E., Gofer Y. Electrochemical Li -Insertion Processes into Carbons Produced by Milling Graphitic Powders : The Impact of the Carbons’ Surface Chemistry // J. Electrochem. Soc. 2002. Vol. 149. P. A152–A161.
  83. Zhang S., Ding M. S., Xu K., Allen J., Jow T. R. Understanding solid electrolyte interface film formation on graphite electrodes // Electrochem. and Solid -State Let. 2001. Vol. 4. P. A206–A208.
  84. Funabiki A., Inaba M., Ogumi Z. A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite // J. Power Sources. 1997. Vol. 68. P. 227–231.
  85. Wang C., Appleby A. J., Little F. E. Low -temperature characterization of lithium -ion carbon anodes via microperturbation measurement // J. Electrochem. Soc. 2002. Vol. 149. P. A754–A760.
  86. Kulova T. L., Skundin A. M. Balance between reversible and irreversible processes during lithium intercalation in graphite // Russ. J. Electrochem. 2006. Vol. 42. P. 251–258.
  87. Pridatko K. I. Electrochemical insertion of lithium in thin tin films // Russ. J. Electrochem., 2006, Vol. 42. P. 63–70.

 

Текст в формате PDF:
(downloads: 870)
Файл статьи: