Конверсия органических отходов в электрическую энергию с помощью микробных электрохимических технологий
УДК 541.135
DOI: https://doi.org/10.18500/1608-4039-2016-16-4-207-225
Сточные воды – потенциальные объекты переработки, из которых можно получать биоэнергию и биохимикаты. Восстановление энергии и ценных продуктов может частично скомпенсировать стоимость обработки сточных вод и несколько уменьшить зависимость от ископаемого топлива.
Существует несколько биологических стратегий обработки промышленных и сельскохозяйственных сточных вод: очистка сточных вод с помощью микробных топливных элементов; метаногенное анаэробное ферментативное расщепление органических веществ в сточных водах; ферментативное производство водорода из сточных вод; биологическое химическое производство. Первые три из этих стратегий приводят к выработке биоэнергии (электричество, метан, водород).
В настоящем обзоре анализируются современное научно-техническое состояние и проблемы указанных выше биоэнергетических стратегий обработки сточных вод, содержащих органические вещества.
- Logan E., Rabaey K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electro- chemical Technologies // Science. 2012. Vol. 337. P. 686–690.
- Angenent L. T., Karim K., Al-Dahhan M. H., Wrenn B. A., Domiguez-Espinosa R.. Production of bioenergy and biochemicals from industrial and agricultural wastewater // TRENDS in Biotechnology. 2004. Vol. 22, № 9. P. 478–485.
- Казаринов И. А. Введение в биологическую электрохимию. Саратов : Изд-во Сарат. ун-та, 2012. 216 с.
- Katz E., Shipway A. N., Willner I. Handbook of fuel cells – Fundamentals, Technology and Application. / eds. W. Vielstich, H. A. Gasteiger, A. Lamm. London, 2003. Vol. 1. P. 355.
- Shukla A. K., Suresh P., Berchmans S., Rajendran A. Biological fuel cells and their applications // Current Science. 2004. Vol. 87, № 4. P. 455–468.
- Davila D., Esquivel J., Vigues N. Development and Optimization of Microbial Fuel Cells // J. New Mater. Electroch. Systems. 2008. Vol. 11. P. 99–103.
- Tanisho S., Kamiya N. Microbial fuel cell using Enterobacter aerogenes // Bioelectrochem. and Bioenerg. 1985. Vol. 21. P. 25–32.
- Lewis K. Symposium on Bioelectrochemistry of Microorganisms, IV. Biochemical Fuel Cells // Bacteriol. Rev. 1966. Vol. 30. P. 101.
- Thauer R. K., Kirchniawy F. H., Jungermann K. A. Properties and function of the pyruvate formate lyase reaction in clostridiae // Eur. J. Biochem. 1972. Vol. 27. P. 282.
- Raeburn S., Rabinowitz J. C. Pyruvate : ferredoxin oxidoreductase. I. The pyruvate-CO2 exchange reac- tion // Arch. Biochem. Biophys. 1971. Vol. 146. P. 9.
- Jungermann K. A., Thauer R. K., Leimenstoll G., Deker K. Function of reduced pyridine nu- cleotide-ferredoxin oxidoreductase in saccharolytic Clostridia // Biochim. Biophys. Acta. 1973. Vol. 305. P. 268.
- Thauer R. K., Jungermann K. A., Deker K. Energy conservation in chemotrophic anaerobic bacteria // Bacteriol. Rev. 1977. Vol. 41. P. 100.
- Suzuki S., Karube I., Matsuoka H., Ueyama S., Kawakubo H., Isoda S., Murahashi T. Biochemical energy conversion by immobilized whole cells // Ann. N. Y. Acad. Sci. 1983. Vol. 413. P. 133.
- Suzuki S., Karube I., Matsunaga T., Kuriyama S., Suzuki N., Shirogami T., Takamura T. Biochemical energy conversion using immobilized whole cells of Clostridium butyricum // Biochimie. 1980. Vol. 62. P. 353.
- Karube I., Matsunaga T., Tsuru S., Suzuki S. Biochemical fuel cell utilizing immobilized cells of Clostridium butyricum // Biotechnol. Bioeng. 1977. Vol. 19. P. 1727.
- Liu C. C., Carpenter N. A., Schiller J. G. Role of platinum black in a bio-fuel cell using glucose or hydrogen as fuel source // Biotechnol. Bioeng. 1978. Vol. 20. P. 1687–1689.
- Rabaey, K., Verstraete W. Microbial fuel cells : novel biotechnology for energy generation // TRENDS in biotechnology. 2005. Vol. 435, № 6. P. 291–298.
- Schrö der U. Anodic electron transfer mechanisms in microbial fuel cells and their energy effiency // Phys. Chem. Chem. Phys. 2007. Vol. 9. P. 2619–2629.
- Kano K., Ikeda T. Fundamentals and practices of mediated bioelectrocatalysis // Anal. Sci. 2000. Vol. 16. P. 1013.
- Davis J. B., Yarbrough Jr. H. F. Preliminary Experiments on a Microbial Fuel Cell // Science. 1962. Vol. 137. P. 615.
- Tanaka K., Vega C. A., Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells // Bioelectrochem. Bioeng. 1983. Vol. 11. P. 289.
- Sell D., Kramer P., Kreysa G. Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell // Appl. Microbiol. Biotechnol. 1989. Vol. 31. P. 211.
- Park D. H., Kim S. K., Shin I. H., Jeong Y. Electricity production in biofuel cell using modified graphite electrode with neutral red // J. Biotechnol. Lett. 2000. Vol. 22. P. 1301.
- Liu H., Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane // Sci. Technol. 2004. Vol. 38, № 14. P. 4040.
- Zhen He, Largus T. Application of Bacterial Biocathodes in Microbial Fuel Cells // Electroanalysis. 2006. № 19–20. P. 2009–2015.
- Bond D. R., Holmes D. E., Tender L. M., Lovely D. R. Electrode-reducing microorganisms that harvest energy from marine sediments // Science. 2002. Vol. 295. P. 483.
- Logan B. E., Murano C., Scott K., Gray N. D., Head I. M. Electricity generation from cysteine in a microbial fuel cell // Water Research. 2005. Vol. 39. P. 942.
- Rabaey K., Lissens G., Siciliano S., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency // Biotechnol. Lett. 2003. Vol. 25. P. 531.
- Bulter J. I. A diheme c-type cytochrome involved in Fe (III) reduction by Geobacter sulfurreducens // J. Bacteriol. 2004. Vol. 186. P. 4042–4045.
- Methe B. A. Genome of Geobacter sulfurreducens : metal reduction in subsurface environments // Science. 2003. Vol. 302. P. 1967–1969.
- Rabaey K. Microbial ecology meets electrochemistry : electricity driven and driving communities // The ISME Journal. 2007. Vol. 1. P. 9–18.
- Lovley D. R. Microbial energizers : fuel cells that keep on going // Microbe. 2006. Vol. 1. P. 323–329.
- Myers C. R. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 // J. Bacteriol. 1992. Vol. 194. P. 3429–3438.
- Myers C. R. Role of outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide // Appl. Environ. Biotechnol. 2001. Vol. 67. P. 260–269.
- Kim H. J. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens // Enzyme Microb. Technol. 2002. Vol. 30. P. 145–152.
- Kim B. H. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens // J. Microbiol. Biotechnol. 1999. Vol. 9. P. 127–131.
- Choi Y. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation // Bull. Korean Chem. Soc. Vol. 24, № 4. P. 437–440.
- Park D. H. Improved fuel cell and electrode designs for producing electricity from microbial degradation // Biotechnol. Bioeng. 2003. Vol. 81. P. 348–355.
- Vega C. A. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plane- tarium, Streptococcus lactis and Erwinia dissolvens // Bioelectrochem. Bioenerg. 1987. Vol. 17. P. 217–222.
- Tender L. M. Harnessing microbially generated power on the seafloor // Nat. Biotechnol. 2002. Vol. 20. P. 821–825.
- Kim H. J. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens // Enzyme Microb. Technol. 2002. Vol. 30. P. 145–152.
- Bond D. R. Electricity production by Geobacter Sulfurreducens attached to electrodes // Appl. Environ. Microbiol. 2003. Vol. 69. P. 1548–1555.
- Zhang X. Modelling of a microbial fuel cell process // Biotechnol. Lett. 1995. Vol. 17. P. 809–812.
- Nevin K. P., Lovley D. R. Lack of production of electronshuttling compounds or solubilization of Fe (III) during reduction of insoluble Fe (III) oxide by Geobacter metallireducens // Appl. Environ. Microbiol. 2000. Vol. 66. P. 2248–2251.
- Magnuson T. S., Isoyama N., Hodges-Myerson A. L., Davidson G., Maroney M. J., Geesey G. G., Lov- ley D. R. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe (III) reducing cytochrome c from Geobacter sulfurreducens // Biochem. J. 2001. Vol. 359. Р.147–152.
- Bond D. R., Lovley D. R. Electricity production by Geobacter sulfurreducens attached to electrodes // Appl. Environ. Microbiol. 2003. Vol. 6. Р.1548–1555.
- Nevin K. P., Lovley D. R. Mechanisms for accessing insoluble Fe (III) oxide during dissimilatory Fe (III) reduction by Geothrix fermentans // Appl. Environ. Microbiol. 2002. Vol. 68. P. 2294–2299.
- Newman D. K., Kolter R. A role for excreted quinones in extracellular electron transfer // Nature. 2000. Vol. 405. P. 94–97.
- Park D. H., Zeikus J. G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens // Appl. Microbiol. Biotechnol. 2002. Vol. 59. P. 58–61.
- Lettinga G. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment // Biotechnol. Bioeng. 1980. Vol. 22. P. 699–734.
- Jantsch T. G. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor // Bioresour. Technol. 2002. Vol. 84. P. 15–20.
- Karim K., Gupta S. K. Continuous biotransformation and removal of nitrophenols under denitrifying conditions // Water Res. 2003. Vol. 37. P. 2953–2959.
- Kalogo Y. Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment : motives and perspectives // World J. Microbiol. Biotechnol. 1999. Vol. 15. P. 523–534.
- Angenent L. T. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste // Water Res. 2002. Vol. 36. P. 4648–4654.
- Logan B. E. Biological hydrogen production measured in batch anaerobic respirometers // Environ. Sci. Technol. 2002. Vol. 36. P. 2530–2535.
- Yokoi H. Microbial production of hydrogen from starchmanufacturing wastes // Biomass Bioenergy. 2002. Vol. 22. P. 389–395.
- Bungay H. R. Confessions of a bioenergy advocate // Trends Biotechnol. 2004. Vol. 22. P. 67–71.
- Laufenberg G. Transformation of vegetable waste into value added products : (A) the upgrading concept ; (B) practical implementations // Bioresour. Technol. 2003. Vol. 87. P. 167–198.
- Khanal S. K. Biological hydrogen production : effects on pH and intermediate products // Intern. J. Hydrogen Energy. 2004. Vol. 29. P. 123–131.
- Wu S. Y. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors // Biotechnol. Prog. 2003. Vol. 19. P. 828–832.
- Hussy I. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflo- ra // Biotechnol. Bioeng. 2003. Vol. 84. P. 619–626.
- Yu H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures // Intern. J. Hydrogen Energy. 2002. Vol. 27. P. 1359–1365.
- Wu S. Y. Microbial hydrogen production with immobilized sewage sludge // Biotechnol. Prog. 2002. Vol. 18. P. 921–926.
- Fang H. H. Effect of pH on hydrogen production from glucose by a mixed culture // Bioresour. Technol. 2002. Vol. 82. P. 87–93.
- Chen C. C. Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge // Acta Biotech- nol. 2001. Vol. 21. P. 371–379.
- Ueno Y. Microbial community in anaerobic hydrogen-producing micrflora enriched from sludge compost // Appl. Microbiol. Biotechnol. 2001. Vol. 57. P. 555–562.
- Ginkel S. V. Biohydrogen production as a function of pH and substrate concentration // Environ. Sci. Technol. 2001. Vol. 35. P. 4726–4730.
- Gottschalk G. Bacterial Metabolism. Springer-Verlag. 1986. P. 359. DOI: 10.1007/978-1-4684-0465-4.
- Rozendal R. A., Hamelers H. V. M., Molencamp R. J., Buisman C. L. N. Performance of single cham- ber biocatalysed electrolysis with different types of ion exchange membranes // Water Research. 2007. Vol. 41. P. 1984–1994.
- Clauwaert P., Toledo R., D. van der Ha, Crab R., Verstraete W., Hu H., Udert K. M., Rabaey K. Combining biocatalyzed electrolysis with anaerobic digestion // Water Science. 2008. Vol. 57. P. 575–579.
- Liu H., Grots S., Logan B. Electrochemically assisted microbial production of hydrogen from acetate // Environ. Sci. Technol. 2005. Vol. 39. P. 4317–4320.
- Решетилов А. Н., Понаморева О. Н., Решетилова Т. А., Богдановская В. А. Генерация электрической энергии в биотопливном элементе на основе клеток микроорганизмов // Вестн. биотехнологии. 2005. T. 1, № 2. С. 54–62.
- Heidrich E. S., Curtis T. P., Dolfing J. Determination of the internal chemical energy of wastewater // Environ. Sci. Technol. 2011. Vol. 45. P. 827.